Math 201, Test \#1B

Solutions

1. For this problem,

$$
f(x)=\frac{2 x^{2}-7 x+3}{x^{2}-9}
$$

Find each limit, if it exists. If a limit does not exist, write DNE.
(a) $\lim _{x \rightarrow 3} f(x)$

Solution: First, note that $f(x)$ is not continuous at $x=3$, since $f(3)$ is undefined (zero denominator). However, both its numerator and its denominator are zero at $x=3$, which implies the limit as $x \rightarrow 3$ may exist.
Since the numerator and denominator are both polynomials with $x=3$ as a root, it must be the case that $x-3$ is a common factor. Thus, we can factor both polynomials, which allows us to simplify the expression for $f(x)$:

$$
\begin{aligned}
f(x) & =\frac{2 x^{2}-7 x+3}{x^{2}-9} \\
& =\frac{(2 x-1)(x-3)}{(x+2)(x-3)} \\
& =\frac{2 x-1}{x+2}, x \neq 3
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{2 x-1}{x+3}=\frac{2(3)-1}{(3)+3}=\frac{5}{6} .
$$

(b) $\lim _{x \rightarrow-3} f(x)$

Solution: This limit does not exist (DNE). This is because the denominator approaches zero as $x \rightarrow-3$, but the numerator does not approach zero as $x \rightarrow-3$. Thus, there is no real number that $f(x)$ approaches as $x \rightarrow-3$.

Note: It would not be correct to say that the limit is ∞, since the left- and right-hand limits are different. To see this, look at the simplified expression for $f(x), \frac{2 x-1}{x+3}$.
As $x \rightarrow-3$, the numerator approaches the value -7 , which is negative. If $x \rightarrow-3$ from the left, we have $x+3<0$, which means the fraction's value is positive (negative divided negative); thus, the left-hand limit of $f(x)$, as $x \rightarrow-3^{-}$, is $+\infty$.

On the other hand, as $x \rightarrow-3$ from the right, $x+3>0$, which (by similar reasoning to that in the preceding paragraph) implies the right-hand limit of $f(x)$, as $x \rightarrow-3^{+}$, is $-\infty$.

Since the left- and right-hand limits are not the same (one is positive, the other negative), our conclusion must be that the limit does not exist.
(c) $\lim _{x \rightarrow \infty} f(x)$

Solution: The short-cut solution (which I accepted for this problem) is to find the ratio of the leading terms on the top and bottom. In this case, we'd have $2 x^{2} / x^{2}=2$, which implies a horizontal asymptote of $y=2$. Therefore, $\lim _{x \rightarrow \infty} f(x)=2$.
More formally, we can prove $\lim _{x \rightarrow \infty} f(x)=2$ algebraically:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}-7 x+3}{x^{2}-9} & =\lim _{x \rightarrow \infty} \frac{x^{2}\left(2-\frac{7}{x}+\frac{3}{x^{2}}\right)}{x^{2}\left(1-\frac{9}{x^{2}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2-\frac{7}{x}+\frac{3}{x^{2}}}{1-\frac{9}{x^{2}}} \\
& =\frac{\lim _{x \rightarrow \infty}\left(2-\frac{7}{x}+\frac{3}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(1-\frac{9}{x^{2}}\right)} \\
& =\frac{2-0+0}{1-0} \\
& =2
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} 2^{f(x)}$

Solution: We know that all compositions of "elementary" functions (including exponential functions) are continuous on their domains. Further, we know that, for continuous functions f and $g, \lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)$. Since (from part (c)) $\lim _{x \rightarrow \infty} f(x)=2$, it follows that the limit of $2^{f(x)}$ as $x \rightarrow \infty$ must be 2^{2}. That is,

$$
\lim _{x \rightarrow \infty} 2^{f(x)}=2^{\lim _{x \rightarrow \infty} f(x)}=2^{2}=4
$$

2. If an object is dropped from the top of a 75 -meter-tall building, its height after t seconds is given by the function $f(t)=75-5 t^{2}$ (meters).
(a) Find the object's average velocity for the time period from $t=0$ to $t=3$. (Include the correct units of measurement.)
Solution: Average velocity is displacement divided by time elapsed. Over the time span from $t=0$ to $t=3,3$ seconds have elapsed, and the displacement is $f(3)-f(0)=30-75=-45$. Therefore, the average velocity is $v=\frac{-45}{3}=-15$ meters per second.
(b) Find the object's instantaneous velocity at time $t=3$. (Include the correct units of measurement.)
Solution: Instantaneous velocity is given by the derivative of the position function:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\left(75-5 x^{2}\right)-30}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{45-5 x^{2}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{5\left(9-x^{2}\right)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{5(3-x)(3+x)}{x-3} \\
& =\lim _{x \rightarrow 3}-5(3+x) \\
& =-5(3+3)=-30 .
\end{aligned}
$$

Therefore, the object's instantaneous velocity at time $t=4$ is -30 meters per second.
3. The following diagram shows the graph of $y=f(x)$. The dashed line at $x=1$ is a vertical asymptote. Each point represented by a dot has integer coordinates.

Note: For part (a), no explanations are required. For (b) and (c), write your answers in the space provided; use the back of this page if you need more room.
(a) Find each of the following limits. If an answer does not exist, write "DNE."

$$
\begin{array}{rrr}
\lim _{x \rightarrow-3} f(x)=0 & \lim _{x \rightarrow-1} f(x) D N E & \lim _{x \rightarrow 0} f(x)=3 \\
\lim _{x \rightarrow 1} f(x)=1 & \lim _{x \rightarrow 2} f(x)=0 & \lim _{x \rightarrow 3} f(x) D N E
\end{array}
$$

(b) List all of the values of x at which $f(x)$ is not continuous. Provide a brief (one sentence) explanation for each of your answers.

Solution: f is not continuous at $-1,2$, and 3 .

- Since $f(-1)$ is undefined, f is discontinuous at $x=1$.
- At $x=2$, there is a removable discontinuity, since $\lim _{x \rightarrow 2} f(x)=0$ but $f(2)=3$.
- At $x=3$, there is a jump discontinuity; this is because the leftand right-hand limits of f are unequal at $x=-3$. In particular, $\lim _{x \rightarrow 3^{-}} f(x)=1$ while $\lim _{x \rightarrow 3^{+}} f(x)=2$.
(c) Find the interval(s) on which $f^{\prime}(x)$ is positive, the interval(s) on which $f^{\prime}(x)$ is negative, and the interval(s) on which $f^{\prime}(x)$ is zero. Briefly (one sentence) explain each of your answers.

Solution:

- $f^{\prime}(x)$ is negative on the intervals $(-4,-1)$ and $(-1,2)$, since f is increasing on those intervals.
- $f^{\prime}(x)$ is positive on $(2,3)$, since f is decreasing on that interval.
- $f^{\prime}(x)$ is zero on the interval $(3,4)$, since f is constant on that interval.

4. Find an equation for the line tangent to the parabola $y=x^{2}-6 x+10$ at the point $(6,10)$.
Solution: To find an equation for the tangent line, we must find its slope; this will be the derivative of the function $x^{2}-6 x+10$ (with respect to x) evaluated at $x=6$:

$$
\begin{aligned}
\lim _{x \rightarrow 6} \frac{\left(x^{2}-6 x+10\right)-\left((6)^{2}-4(6)+6\right)}{x-6} & =\lim _{x \rightarrow 6} \frac{x^{2}-6 x+10-10}{x-6} \\
& =\lim _{x \rightarrow 6} \frac{x^{2}-6 x}{x-6} \\
& =\lim _{x \rightarrow 6} \frac{x(x-6)}{x-6} \\
& =\lim _{x \rightarrow 6} x \\
& =6
\end{aligned}
$$

Thus, the tangent line has slope $m=6$ and passes through the point $(6,10)$. Using the point-slope form, we find the equation

$$
y-10=6(x-6)
$$

or equivalently

$$
y=6 x-26
$$

5. Use the precise definition of the limit to prove that $\lim _{x \rightarrow 1}(7-4 x)=3$.

Solution: Let $\varepsilon>0$ be any positive number. We want to restrict x in such a way that $|(7-4 x)-3|<\varepsilon$.

Algebraically, the following are equivalent:

$$
\begin{aligned}
|(7-4 x)-3| & <\varepsilon \\
|4-4 x| & <\varepsilon \\
4|1-x| & <\varepsilon \\
|1-x| & <\frac{\varepsilon}{4}
\end{aligned}
$$

We've shown that $|(7-4 x)-3|<\varepsilon$ whenever $|x-1|<\frac{\varepsilon}{4}$. (Notice that $|1-x|$, from the last line above, is the same thing as $|x-1|$.) In other words, if we choose x to be withn $\frac{\varepsilon}{4}$ units of 1 , it will follow that $7-4 x$ is within ε units of 3 , which is what we wanted.

So, if we select $\delta=\frac{\varepsilon}{4}$, then $|(7-4 x)-3|<\varepsilon$ whenever $|x-1|<\delta$. Thus, by the precise definition of the limit, we've shown $\lim _{x \rightarrow 1}(7-4 x)=3$.

Note: if we were to choose δ to be any positive number less than or equal to $\frac{\varepsilon}{4}$, the above conclusion would still follow. The objective is always to find a positive number δ that is small enough to make the argument work.
6. The diagram below is a Mathematica graph of the function

$$
f(x)=\frac{2 \cos (x)+x^{2}-2}{x^{4}} .
$$

(a) From the graph, estimate $\lim _{x \rightarrow 0} f(x)$, correct to the nearest hundredth.

Solution: From the graph, we see that $\lim _{x \rightarrow 0} f(x)$ is approximately 0.08 . (Comment: The exact value, which can't be inferred directly from a graph but can be found using methods we'll learn later in the semester, turns out to be $1 / 12$, or $0.083333 \ldots$.
(b) Is f continuous at $x=0$? Why, or why not? Write at least one sentence of explanation.
Solution: No, f is not continuous at $x=0$. In order for f to be continuous at $0, f(0)$ must exist and be equal to $\lim _{x \rightarrow 0} f(x)$. In this case, $f(0)$ clearly does not exist, since we can't divide by zero.
Comment: As we've seen multiple times in class (and in the textbook, and on Mathematica assignments), a computer graph can be misleading when there is a removable discontinuity, as is the case here.
(c) (Extra credit - optional): Based on your answer to part (a), evaluate

$$
\lim _{x \rightarrow 0} \frac{2 \cos (x)-2}{x^{2}}
$$

Explain your answer. (No credit will be given without a valid explanation!) Solution: As demonstrated in class with a Mathematica graph, the value of this limit turns out to be -1 . Since no one solved this on the day of the test, I'm leaving it open - the first person who can show me a valid proof that this limit's value is -1 will have five extra credit points added to his/her score for this test. Note: for your proof, you may assume (without proof) that the limit shown in part (a) is correct.

