For the following questions, imagine we have a $\mathbf{3 0}$-tone equally tempered scale (that is, a " $30-\mathrm{TET}$ " tuning system) rather than the usual "12-TET."

For this assignment, T will denote a transposition by n semitones in this 30-TET system. So, for example, on this assignment we would say $T_{30}=T_{0}$, since 30 semitones (in $30-\mathrm{TET}$) would be equal to one octave. (Note: this rule applies only to this assignment. In general, all variations are based on 12-TET unless stated otherwise!)

Answer each of the following questions. Write your work and answers on a separate sheet of paper (i.e., not crammed into the small spaces on this sheet).

1. How would we define "inversions" in a 30 -tone system? (Think by analogy - take what we do with our usual 12 -tone system, and extend the same reasoning to a 30 -tone system.) It may help to "name" the notes numerically - say, [0] for the base note, then [1], [2], etc., according to their relative positions on a 30-tone "musical clock."

Note: \#1 needs to be answered before we can do \#2 and \#3 below!
2. Suppose a melody (in 30-TET) consists of the following tones, in order, where each tone is named as suggested in \#1 above:
[0] , [20] , [12] , [25] , [15] , [10]

Find each of the following variations of this melody.
a. T_{10}
b. \mathcal{T}_{20}
c. $I T_{10}$
d. $T_{10} I$
e. $T_{20} I$

Hint: if you were asked to find \mathcal{T}_{15} of the given melody, the correct answer would be as follows:

$$
[15],[5],[10],[20],[0],[25]
$$

3. Find the cyclic subgroup of variations generated by each of the following. Show your work.
a. \mathcal{J}_{6}
b. \mathcal{J}_{10}
c. \mathcal{J}_{18}
d. \mathcal{T}_{20}
e. \mathcal{J}_{25}
f. $\mathcal{T}_{20} I$

Hint: in 30-TET, transpositions should combine according to a "mod 30" rule, rather than "mod 12." So, for example, $\mathcal{J}_{20} \mathcal{T}_{20}=\mathcal{J}_{40}=\mathcal{J}_{10}$, since in 30-TET there are 30 tones to the octave.

For example: The cyclic subgroup generated by \mathcal{T}_{5} would be $\left\{\mathcal{J}_{5}, \mathcal{J}_{10}, \mathcal{J}_{15}, \mathcal{J}_{20}, \mathcal{J}_{25}, \mathcal{J}_{0}\right\}$.

Note: the main idea of this assignment is to do something similar to what we have been doing in class, but in the universe of " $\bmod 30$ " arithmetic rather than "mod 12 " arithmetic. It is interesting to consider what is similar about the two systems, and what is different!

