
Notes to accompany Section 9.2 – Combining Turing Machines for Complicated Tasks 

“Building block” Turing machines – define “small” machines first, which carry out frequently used routines, and 

then concatenate them, passing the ending configuration of one along to the next… 

Assume for all examples that Σ = {𝑎, 𝑏, 𝑐}. We’ll use lower case l/r to indicate movement left/right. Also, for 

each example, assume we have initial state 𝑞0 and final state 𝑞𝑓, with other states added as needed. 

 

Throughout the following, “TM” is an abbreviation for “Turing machine.” 

 

Example: “R” = the TM that moves the read/write head one place to the right. (easy) 

Transition function: 

𝛿(𝑞0, 𝑎) = (𝑞𝑓 , 𝑎, 𝑟) 

𝛿(𝑞0, 𝑏) = (𝑞𝑓 , 𝑏, 𝑟) 

𝛿(𝑞0, 𝑐) = (𝑞𝑓 , 𝑐, 𝑟) 

𝛿 (𝑞0, ) = (𝑞𝑓 , , 𝑟) 

 

(Note: The above can be abbreviated as simply 𝛿(𝑞0, 𝑥) = (𝑞1, 𝑥, 𝑟), ∀ 𝑥 ∈ {𝑎, 𝑏, 𝑐, }.) 

 

Example:  = the TM that erases the current cell, and halts reading the erased cell. 

Transition function: 

𝛿(𝑞0, 𝑥) = (𝑞1, , 𝑟) , ∀𝑥 ∈ {𝑎, 𝑏, 𝑐, } 

𝛿(𝑞1, 𝑥) = (𝑞𝑓 , 𝑥, 𝑙), ∀𝑥 ∈ {𝑎, 𝑏, 𝑐, } 

 

Note that we need an additional state whose job is simply to move us back one place to the left, so that we halt 

on the erased cell. (If the text's definition allowed us to read/write without moving the head afterwards, this 

would be a bit simpler. It’s not hard to see that an alternative definition, wherein each transition allowed us to 

move left, move right, or remain in place, would be effectively equivalent to the text’s definition of “Turing 

machine.”) 

 

Note: We could design a TM with the name “𝑎,” “𝑏,” or “𝑐” in a similar way. In general, we’ll define TM “𝑥” to be 

the TM that erases the current cell, writes an 𝑥 there (in place of what was there before), then halts on that cell.  

 

Example: 𝑅□ = the TM that moves to the right until it finds a blank, then halts on that blank. (This comes in 

handy often; e.g., finding the end of the original input string, which is typically the first blank cell to the right.) If 

the current cell is a blank, this machine will just halt on that cell, rather than moving to the right.  

Transition function: 

𝛿(𝑞0, 𝑥) = (𝑞0, 𝑥, 𝑟), ∀𝑥 ∈ {𝑎, 𝑏, 𝑐} 

𝛿(𝑞0, □)  = (𝑞1, □, 𝑟)   

𝛿(𝑞1, 𝑥) = (𝑞𝑓 , 𝑥, 𝑙), 𝑥 ∈ {𝑎, 𝑏, 𝑐, □} 



 

Note: We can easily define machines 𝑅𝑎 , 𝑅𝑏 , etc. similarly; i.e., 𝑅𝑥 may be defined to be the machine which 

moves to the right until it finds the first instance of 𝑥, then halts on that cell. In a similarly straightforward way, 

we can design machine 𝐿𝑥, which moves left, rather than right, until finding 𝑥 for the first time, and then halts 

on that cell. (Try designing this one yourself as an exercise.) 

 

Another useful building block machine (design as an exercise): 

𝑅𝑥̅ = the TM that moves to the right until it finds a cell which does not have an 𝑥 in it, then halts on that cell.  

For instance, if we give Turing machine 𝑅𝑎̅ an input tape with configuration 𝑎𝑏𝑎𝑏q0𝒂𝑎𝑎𝑏𝑎𝑎𝑏, it should  halt 

with 𝑎𝑏𝑎𝑏𝑎𝑎𝑎qf𝒃𝑎𝑎𝑏. That is, it will halt in a favorable state, reading the first “b” to the right of where the 

read/write head started.  

 

This allows us to more easily design TM’s which carry out more complicated algorithms. In particular, using 

“building block” machines gets us around the need to deal with defining more and more (dozens/hundreds?/…) 

states and corresponding transition rules. 

 

 

Example: “Eraser” – a machine which erases all input to the right of the read/write head (until the first blank is 

encountered) – that is, given an initial configuration 𝑤1𝑞0𝑤2, where 𝑤2 is assumed to be nonempty, the 

machine will halt on 𝑤1𝑞𝑓  - that is, 𝑤2 will be erased, and the machine will halt reading the first blank cell 

after 𝑤1. (Or, if the initial configuration was 𝑞0𝑤 – that is, if the tape is blank to the left of the read/write head - 

then the machine will just erase 𝑤 and then halt on an empty tape.) If 𝑤2is empty, this machine will immediately 

halt on 𝑤1𝑞𝑓  (making no changes to the tape; just going to a final state).  

  

Steps:  

1. Read the current cell. If it’s blank, halt on that cell. If not, erase the current cell. 

2. Move one cell to the right. 

3. Repeat from step 1.  

 

So, as long as the current cell is nonblank, we apply the “building block” machines , then R, repeatedly. A 

diagram for this machine is shown to the right. The diagram indicates 

that, as long as the currently read symbol on the tape (“x”) is not a 

blank, we will erase the current cell, then move one cell to the right. 

The loop will end when the current symbol is a blank; at this point, 

the machine will halt. 

 

Note: with these diagrams, we’re not dealing with states at all. We’re 

only concering ourselves with the contents of the tape and the position of the read/write head when the 

machine halts. (We can always assume that each machine is halting in a “final” state, and design the machine 

accordingly.)  



Example: “Leftshift” – a machine which shifts an entire input string one cell to the left. More precisely: given an 

initial configuration 𝑤1𝑞0𝑤2, where 𝑤2 is assumed to be nonempty (and include no blanks), “leftshift” will shift 

𝑤2 one cell to the left. (If 𝑤1 is nonempty, its rightmost cell will end up being overwritten by the leftmost cell of 

𝑤2.) This machine will halt on the first cell of 𝑤2 after it’s been shifted – i.e., in configuration 𝑤1
′𝑞𝑓𝑤2, where 𝑤1

′  

is 𝑤1 with its last cell removed (assuming 𝑤1 was nonempty in the first place).  

 

For example: if the input tape accacbbac is given to “Leftshift” as input (where the read/write head is currently 

reading the highlighted “b”), then the machine will halt on accabbac. (Note that the string before the current 

cell had been “accac;” now it’s just “acca” because the last “c” got overwritten.)  

 

Another example: if the input is 𝑤 𝑤, where the read/write cell is currently on the first character of the 

second instance of “w,” then the machine will halt on 𝑤𝑤, reading the first character of the second instance of 

w.  

 

Steps:  

1. Read the current cell. If it’s blank, stop. Otherwise, erase it (temporarily, to mark its location) and memorize it 

(with an internal state).  

2. Move one cell to the left, then write the memorized character in that cell.  

3. Move two cells to the right. (Note – one cell to the right is the cell you just erased, so move one more place.) 

Then repeat from step 1.  

 

So, we’re using the following “building blocks,” if the current cell , 𝑥, is nonblank: 

, then 𝐿, then 𝑥, then 𝑅 twice. That is:  𝐿 𝑥 𝑅 𝑅. If the current cell is blank, then we halt. 

 

Diagram: 

  
 

Comment: This machine does “leftshift” the string to the right of the read/write head’s initial location, but we 

did miss a detail here. Do you see it? (One of the exercises at the end of this handout invites you to fix the 

“mistake!”) 



 Example: Turing machine 𝐶 is to be a machine that will make an extra copy the input string. Specifically, given 

input tape with configuration 𝑞0𝑤, the machine will halt on 𝑤□𝑤. (Note: it’s easier to design this machine with a 

blank between copies, though it could be removed with a few extra steps.) 

 

First, describe the algorithm, step by step, in words… 

1. “Memorize” the current character, x, being read by the read/write head. (This can be done with states; e.g., 

go to state 𝑞𝑥 to indicate that you’ve read 𝑥… 

2. Erase this cell, temporarily. (This is how we’ll memorize the position of the character we just read.) 

3. Move to the right until we reach a blank cell – this is the blank between our copies of w.  

4. Move to the right again until we reach the next blank cell – this is the end of the “copy” to this point. 

5. Copy the “memorized” character. 

6. Move left to the next blank cell (between copies), then again to the next blank cell (marking the position of 

the cell we just copied). 

7. Rewrite the memorized character in this cell.  

8. Move one cell to the right. If this cell is blank, move left to the first cell of the original input and halt. If this cell 

is not blank, repeat from step 1.  

 

Example: (Here we’ll just underline the current cell, since we’re not naming states) 

Start with abba. Copy/erase the first a, move to the second blank, and write it; this gives us □bba□a. 

Next go back to the left, replace the memorized character: abba□a 

Next move one place to the right. Read a b (not blank), so repeat… 

abba□a … a□ba□ab… abba□ab… etc.  

Eventually end up with abba□abba.  

 

Diagram (rather than transition function) for this in terms of “building blocks”…  

Idea: as long as next character in the input string, x, is not a blank, then we do all of the following: 

 

 𝑅 𝑅  𝑅 𝑅  𝑥 𝐿  𝐿 𝐿  𝑥 𝑅 

 

A diagram for this machine is shown to the right:  

 

 

 

(Note: we didn’t specify which cell the head would be reading when this machine halts. Where will it end up, 

according to these instructions? If we wanted to change that – e.g., move it to the first nonblank cell on the tape 

– how would we do that?) 

  



Practice Exercises: Write out transition functions (add additional states, tape alphabet characters, etc. as 

necessary) for each of the following “building block” machines, described above. (Assume Σ = {𝑎, 𝑏, 𝑐} for each). 

We’ll discuss these in class, and/or solutions will be provided, in the near future…  

 

1. 𝑅𝑎 

2. 𝑅  (move right until the first non-blank cell is reached) 

3. A version of “leftshift” which actually does halt on the first cell of the shifted string. (Our example didn’t halt 

in the right place – can you fix it? Note – this may be trickier than it first appears…)  

4. “Rightshift” (reverse of “leftshift” – that is, given input tape 𝑤1𝑞0𝑤2, halt on 𝑤1 𝑞𝑓𝑤2, which halts on the 

first cell of 𝑤2 after it’s been shifted to the right). 

5. Modify “C” (the “copier” machine) so that it will halt while reading the first (leftmost) nonblank cell on the 

tape. (Hint: Use the 𝐿  building block machine…) 

6. Design a machine similar to machine “C,” but which will halt on 𝑤  𝑤𝑅 rather than on 𝑤  𝑤. That is, given 

input string w, insert a blank and then write the reverse of w, rather than w itself…  


