
 

 

Cosc 362, Spring 2017 

Test #3 – Take-Home Solutions 
 
 

 
1. Consider the pushdown automaton 𝑀 with states {𝑞0, 𝑞1, 𝑞2𝑞𝐹}, imput alphabet {𝑎, 𝑏}, stack alphabet {1, 𝑧}, stack 

start symbol 𝑧, initial state 𝑞0, and final state 𝑞𝐹, with the following transition function: 

𝛿(𝑞0, 𝑎, 𝑧) = (𝑞0, 1𝑧) 

𝛿(𝑞0, 𝜆, 𝑧) = (𝑞𝑓 , 𝑧) 

𝛿(𝑞0, 𝑎, 1) = (𝑞0, 111) 

𝛿(𝑞0, 𝑏, 𝑧) = (𝑞2, 𝑧) 

𝛿(𝑞0, 𝑏, 1) = (𝑞1, 𝜆) 

𝛿(𝑞1, 𝑏, 1) = (𝑞1, 𝜆) 

𝛿(𝑞1, 𝜆, 𝑧) = (𝑞𝑓 , 𝑧) 

𝛿(𝑞2, 𝑏, 𝑧) = (𝑞2, 𝑧) 

𝛿(𝑞2, 𝜆, 𝑧) = (𝑞𝑓 , 𝑧) 

 

a. Sketch a transition graph for 𝑀  

Answer: see diagram to the right 

b. Determine which of the following strings are accepted by 𝑀: 

𝑏𝑏, 𝑎𝑏𝑏, 𝑏𝑏𝑏, 𝑎𝑎𝑏𝑏. (Show your work!) 

(𝑞0, 𝑏𝑏, 𝑧)  ⊢ (𝑞2, 𝑏𝑏, 𝑧) ⊢ (𝑞2, 𝑏, 𝑧) ⊢ (𝑞2, 𝜆, 𝑧) ⊢ (𝑞𝑓 , 𝜆, 𝑧)  - so 𝑏𝑏 is accepted 

(𝑞0, 𝑎𝑏𝑏, 𝑧) ⊢ (𝑞0, 𝑏𝑏, 1𝑧) ⊢ (𝑞1, 𝑏, 𝑧) - we’re stuck here, so 𝑎𝑏𝑏 is not accepted  

bbb is accepted, aabb is not accepted 

 

c. Describe the language that is accepted by 𝑀.  

Answer: it’s the set of all strings of the form 𝑏𝑛, 𝑛 ≥ 0 or 𝑎𝑛𝑏2𝑛−1, 𝑛 ≥ 1  

  



 

 

2. Consider the grammar 

𝑆 → 𝐴𝐵 | 𝐴𝐶 | 𝑎  

𝐴 → 𝑆𝐴 | 𝐴𝐴 | 𝑎 

𝐵 → 𝐵𝐴 | 𝐶𝐶 

𝐶 → 𝑏 

 
Use the CYK algorithm to show that the string 𝑎𝑏𝑏𝑎𝑎 is generated by this grammar.  
 
Answers: sets of variables should be as follows: 
𝑉11 = {𝑆, 𝐴}, 𝑉22 = {𝐶}, 𝑉33 = {𝐶}, 𝑉44 = {𝑆, 𝐴}, 𝑉55 = {𝑆, 𝐴}  
𝑉12 = {𝑆}, 𝑉23 = {𝐵}, 𝑉34 = ∅, 𝑉45 = {𝐴}  
𝑉13 = {𝑆}, 𝑉24 = {𝐵}, 𝑉35 = ∅  
𝑉14 = {𝑆, 𝐴}, 𝑉25 = {𝐵}  
𝑉15 = {𝑆, 𝐴}  
  
Since the start variable is in 𝑉15, 𝑎𝑏𝑏𝑎𝑎 is in the language generated by this grammar.  
 
 
3.  

a. Design (with a list of transition rules or a transition graph, whichever you prefer) a Turing machine, 𝑀, with tape 
alphabet 𝛤 = {𝑎, 𝑏,⊔}, that carries out the following algorithm: 

 If the input string begins with 𝑎, immediately halt in a favorable state, without modifying the input, and with 
the read/write head observing the first letter of the input string 

 If the input begins with 𝑏, replace it with an 𝑎; then, move through the entire string, replacing each 𝑏 with 
an 𝑎 and each 𝑎 with a 𝑏, and then halt in a favorable state, with the read/write head observing the first 
letter of the modified string 

 If the input string is empty, move the read/write head to the right forever, never entering a halting state 
 
 
b. Using “building block” machines from the Combining Turing Machines handout, create a block diagram for the 
machine you designed in part (a).  
 
Note on block diagrams (discussed in class, but maybe not clear from the handout) – in the design of a block diagram, it is 
usually assumed that whenever a “building block” machine halts, it halts in a favorable state, so you don’t need to make this 
explicit in your diagram.  

 
 
Solution: Discussed in class.  
 
 
  



 

 

4. Consider the grammar, 𝐺, with productions 
𝑆 → 𝑎𝑆𝐵 | 𝑏𝐴 
𝐴 → 𝑎𝐴𝐵 | 𝑎𝐵 
𝐵 → 𝑎 | 𝑏 

 
a. Design (with a list of transition rules or a transition graph, whichever you prefer) a npda that accepts the language 
generated by 𝐺.  
 
Solution: The following transitions (with initial state 𝑞0 and final state 𝑞𝐹) describe an npda that accepts 𝐿(𝐺): 
 

𝛿(𝑞0, 𝜆, 𝑧) = (𝑞1, 𝑆𝑧) 
𝛿(𝑞1, 𝑎, 𝑆) = (𝑞1, 𝑆𝐵) 
𝛿(𝑞1, 𝑏, 𝑆) = (𝑞1, 𝐴) 
𝛿(𝑞1, 𝑎, 𝐴) = (𝑞1, 𝐴𝐵) 
𝛿(𝑞1, 𝑎, 𝐴) = (𝑞1, 𝐵) 
𝛿(𝑞1, 𝑎, 𝐵) = (𝑞1, 𝜆) 
𝛿(𝑞1, 𝑏, 𝐵) = (𝑞1, 𝜆) 
𝛿(𝑞1, 𝜆, 𝑧) = (𝑞𝐹 , 𝑧) 

 
 
b. Find a derivation for the string abaabab in G, and show the corresponding sequence moves made by the npda you 
designed in part (a) by which it accepts the input abaabab  
 
Solution: 𝑆 → 𝑎𝑆𝐵 → 𝑎𝑏𝐴𝐵 → 𝑎𝑏𝑎𝐴𝐵𝐵 → 𝑎𝑏𝑎𝑎𝐵𝐵𝐵 → 𝑎𝑏𝑎𝑎𝑏𝐵𝐵 → 𝑎𝑏𝑎𝑎𝑏𝑎𝐵 → 𝑎𝑏𝑎𝑎𝑏𝑎𝑏 

(𝑞0, 𝑎𝑏𝑎𝑎𝑏𝑎𝑏, 𝑧)  ⊢ (𝑞1, 𝑎𝑏𝑎𝑎𝑏𝑎𝑏, 𝑆𝑧) ⊢ (𝑞1, 𝑏𝑎𝑎𝑏𝑎𝑏, 𝑆𝐵𝑧) ⊢ (𝑞1, 𝑎𝑎𝑏𝑎𝑏, 𝐴𝐵𝑧) ⊢ (𝑞1, 𝑎𝑏𝑎𝑏, 𝐴𝐵𝐵𝑧) 
⊢ (𝑞1, 𝑏𝑎𝑏, 𝐵𝐵𝐵𝑧) ⊢ (𝑞1, 𝑎𝑏, 𝐵𝐵𝑧) ⊢ (𝑞1, 𝑏, 𝐵𝑧) ⊢ (𝑞1, 𝜆, 𝑧) ⊢ (𝑞𝐹 , 𝜆, 𝑧) 

 
 
 
 
5. Use the encoding process described in Section 10.4 of the text to encode the Turing machine with the following set of 
transition rules:  

𝛿(𝑞1, 𝑎2) = (𝑞2, 𝑎1, 𝐿) 
𝛿(𝑞1, 𝑎3) = (𝑞3, 𝑎2, 𝑅) 
𝛿(𝑞3, 𝑎2) = (𝑞2, 𝑎1, 𝐿) 

 
Answer: if we use 1 for L and 11 for R (this was not entirely clear from the text), we’d have: 

 

 10110110101 00 101110111011011 00 1110110110101 000 

 

Note: The convention of 00 between rules and 000 at the end of the machine’s code was from class, not from the text. If 

your answer is similar to the one here based on different (but reasonable) assumptions, then it is fine.  

Comment: The main point here is to reiterate the idea that, given a consistent set of rules for doing so, every Turing 

machine may be converted into a unique binary string. In this way, we can show that the set of all Turing machines is 

countable. 


