
The Riemann Integral: Part 3

Oscillation of a Function

In a previous post we obtained the Riemann's condition of integrability using the concept of

upper and lower Darboux sums. We observed that in order that a function be Riemann

integrable on interval  it was necessary (and sufficient) to make the sum

arbitrarily small for some partition  of .

Now it is obvious that this sum can be made arbitrarily smaller if both the parts 

and  can be made arbitrarily smaller. Making the  small

represents no hurdle, we just need to choose partitions of sufficiently small norms.

It is the difference  which requires further probing. Technically this difference is

called the oscillation of function  on interval . More formally we define the

oscillation of a function  on an interval  (denoted by ) as follows:

Clearly  exists and is non-negative provided  is bounded in . It should be obvious that

 whenever . It also makes sense to define the oscillation of a function

 at a certain point. Let  be defined in a certain neighborhood of a point . Then we define

the oscillation of  at  (denoted by ) as follows:

The above limit always exists (provided  is bounded in neighborhood of ) because when

 the oscillation decreases and is always non-negative. It should also be obvious that

 if and only if the function  is continuous at .

We next need to understand that if the oscillation of a function at a certain point  is small

then its oscillation is also small at points in the neighborhood of . To be precise we have the

following property:

If for some given  we have  then there is a neighborhood  of  such that

 for all .

To see why this is the case we need to understand that if  then there is a

neighborhood  of  such that . Since  is an open interval, if  then

we can find a neighborhood of  which is wholly contained in  and in this neighborhood the

oscillation of  does not exceed  and hence the oscillation .
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From the above it follows that:

If  is bounded in  then for any given  the set of points

is open.

and therefore it is quite obvious that:

If  is bounded on  then for any given  the set of points

is closed.

Also we need another result (whose proof is reminiscent of the proof for uniform continuity) on

oscillation of a function:

If a function  is bounded on  and there is an  such that  for all

 then we can find a partition of  such that the oscillation of  in each of the

sub-intervals generated by this partition is less then .

Clearly if  then there is a neighborhood  of  in which the oscillation of  is less

than . Together all these neighborhoods  form an open cover for  and hence by

Heine-Borel Principle there is a finite set of neighborhoods  which covers the interval .

Naturally these neighborhoods must overlap and the end points of these neighborhoods

partition the interval  into a finite number of sub-intervals. Let  be a positive number less

than the length of least of these sub-intervals. Then any sub-interval of length less than  is

contained in some interval  and hence the oscillation of  in this sub-interval is less than .

We thus only need to form a partition of  whose norm is less than  and then oscillation

of  in each of the sub-intervals generated by  is less than .

Condition for Integrability

Let a function  be bounded in  and let  be given. If we consider a partition

 then there will be certain sub-intervals  in which the

oscillation of  is less than  and in the remaining sub-intervals the oscillation of  will be

greater than or equal to . Then the sum

can be split into two sums  where  is based on sub-intervals where the oscillation of 

is less than  and the sum  is based on the remaining sub-interval. Clearly then we have

where the sum  in bove equation is based on the sub-intervals where the

oscillation of  is greater than or equal to . If  is integrable on  then we must be able to

make the difference  less than  for any given . Clearly this would

mean that  so that . Thus we have .
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So we see that in order that a function be integrable on an interval it is necessary that given

any  we must be able to make the sum of lengths of sub-intervals where oscillation of 

is greater or equal to  arbitrarily small. Riemann understood that this condition is also

sufficient for integrability. Let  be given. Also let . We set

 and we choose a partition  such that the sum of lengths of sub-intervals

where the oscillation of  is greater than or equal to  is less than . Clearly then we

have

so that . What we have established above is the following:

Let  be a function bounded on . Then  is integrable on  if and only if for any

given  it is possible to find a partition  of  such that the sum of lengths of

sub-intervals of  where the oscillation of  exceeds  is less than .

Lebesgue's Criterion of Integrability

In the above condition of integrability by Riemann we are forced to consider the lengths of

sub-intervals satisfying some particular property. Namely we want to constrain the length of

sub-intervals where the oscillation of the function is not small. We also know that if a function

is continuous at a point then its oscillation at that point is zero (and conversely). Therefore the

sub-intervals where the oscillation is not small should contain points of discontinuity of the

function. So in effect Riemann condition implies that we should be able to cover the points of

discontinuity by a set of intervals whose total length is arbitrarily small. This important idea

was first formalized by Henri Lebesgue and was given the name of "measure".

More formally we say that a set of points is of measure zero if for any given  it can be

covered by a countable collection of open intervals the total sum of whose lengths is less than

.

It is trivial that a set consisting of a single point is of measure zero. Also if we have a countable

number of sets  each of which is of measure zero, then their union is also of measure zero.

Clearly given  we can cover the set  by a countable collection of intervals whose total

length is less than  and hence the union of all sets  can be covered by a countable

collection of intervals whose total length is less than . It is thus clear that any

countable set is of measure zero and in particular the set of all rational numbers is of measure

zero. There also exist uncountable sets which are of measure zero and we shall indicate one

famous example of such a set later.

So Riemann condition seems to suggest that the set of discontinuities of an integrable function

should be of measure zero. This condition was established by Lebesgue and can be stated as

follows:

Let  be a function bounded on . Then  is Riemann integrable on  if and only if the
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set of discontinuities of  in  is of measure zero.

It is easy to observe that the set of discontinuities of  can be expressed as a union

where

If  is not of measure zero then there is some set  which is not of measure zero. Clearly in

that case there exists an  such that  can not be covered by any collection of intervals

whose total length is less than . If  is a partition of  we can split the difference

 into two sums  such that  is based

on those sub-intervals which don't contain any point of . Then clearly sub-intervals in 

form a cover for the points of  and hence in each of these sub-intervals the oscillation of  is

greater than or equal to . Also the total sum of the lengths of these sub-intervals is not less

than . Therefore it follows that  for any partition  of .

Clearly this means that the function  is not Riemann integrable on .

Next we prove that if set  is of measure zero then  is integrable on . This is bit subtle

in terms of exact formal argument and the reader must pay attention to what follows. Since 

is of measure zero and  for all , it follows that each  is of measure zero. Hence for

each  the set  can be covered by a countable collection of open intervals the sum of whose

lengths is less than . Since the set  is closed and bounded, Heine-Borel Principle applies

here (this although requires a stronger form of the principle than we have established in

previous post). Therefore set  can be covered by a finite number of open intervals the sum

of whose lengths is less than . Let the union of these open intervals be denoted by  and

let  denote set of points which are in  but not in . Then clearly  is made up of a

finite number of closed intervals. If  is one of the intervals making up  then we have

 for all . Hence the interval  can be further partitioned into sub-intervals

such that oscillation of  in each of these sub-intervals in less than . Thus we observe that

the set  can be partitioned into sub-intervals such that the oscillation of  in each of these

sub-intervals is less than . The end points of these sub-intervals make a partition  of

. We then express the difference

where  is based on those sub-intervals which contain points of  and  is based on the

remaining sub-intervals. Clearly then we see that sub-intervals corresponding to  are covered

by  and here  and  so that . The

sub-intervals corresponding to  are contained in  and here we have  and

 so that . It follows that
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Thus corresponding to any positive integer  we have a partition  such that

It follows that  is integrable on .

If a property holds on a certain set of points  except for a set of points of measure zero then

we say that the property holds almost everywhere (abbreviated frequently as a.e.) on set .

Thus the Lebesgue's criterion can be expressed concisely as follows:

A bounded function  is integrable on  if and only if it is continuous almost everywhere

in .

This result can be considered as the beginning of the theory of Measure and Integration as

developed by Henri Lebesgue. We shall have occasion to deal with the rich and elegant theory

developed by Lebesgue in later posts. For now we shall be content to give an example of an

uncountable set which is of measure zero.

The Cantor Set

Let . We remove the middle third open interval  from  to get

. Thus  is composed of  intervals whose total length is

. Now we remove the middle third open interval from each of these two

intervals to get  which consists now of 4 closed intervals whose total length is

. We proceed in this similar fashion indefinitely to generate sets 

which consists of  closed intervals whose total length is

Let

It is obvious that  and hence set  is non-empty. The set  is called Cantor set.

Clearly  can be covered by  whose length is  and  as , it follows

that set  is of measure zero. It needs to be shown that set  is uncountable. If we observe the

construction of set  deeply we will see that it consists of those numbers of interval 

whose ternary expansion (as opposed to decimal expansion) consists of only  or  but not .

Such numbers can't be arranged in a sequence. If they could be arranged in sequence say

 then we could write

where the representation is in ternary and each of  is either  or . Clearly we can now
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construct a number  such that . Then clearly  for any

. Thus clearly  belongs to , but does not belong to sequence . This famous technique

of Cantor called diagonal slash shows that the set  is uncountable.
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