
The Riemann Integral: Part 2

In the last post we defined the Riemann integral of a function on a closed interval and

discussed some of the conditions for the integrability of a function. Here we develop the full

machinery of the Riemann integral starting with the basic properties first.

Basic Properties of the Riemann Integral

The following properties of the Riemann integral are not too difficult to establish:

If  and  are Riemann integrable over  then so are the following functions:

 for any arbitrary real numbers  and

 provided  is bounded away from zero in  i.e. if there exists an  such that

 in 

The first property tells us that the operation of Riemann integration is linear. The linearity is

obvious from the way a Riemann sum is defined. To check for the integrability of  we need

only note that if  are supremum and infimum of  in  then  are

the supremum and infimum (but not necessarily in corresponding order) of  in .

And since  it follows that

Therefore integrability of  implies the integrability of  on the same interval.

To prove the integrability of  we note that  and clearly we have shown above that

 is integrable. Hence it is safe to assume that  is non-negative on . If  are

supremum and infimum of  in  then  are the supremum and infimum (in

corresponding order) of  in . Clearly since  is bounded we have  such that

 for all . Then we have

and this establishes the integrability of .
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Clearly now  is integrable because we can write . To

handle the case of  we note that if  are supremum and infimum of  in 

then  turn out to be supremum and infimum (not necessarily in corresponding

order) of  in  and clearly we have

so that  is integrable on  and therefore so is .

From the definition of the the Riemann integral it is obvious that it also respects the

inequalities in the following manner:

If  are Riemann integrable on  and if  for all  then

we have

In particular we have the following two corollaries:

If  is integrable on  and  are the supremum and infimum of  on  then

If  is integrable over  then

Integrability on a sub-interval

We now establish another fundamental property of the Riemann integral.

If  is Riemann integrable on any closed interval then it is also integrable on any closed

sub-interval.

We will provide two proofs of this statement. The first one is more natural (simpler and

obvious) but limited in generality whereas the second proof is way smarter and uses Cauchy's

criterion of integrability and is of a more general character.

Let  be integrable on  and let . Since  is integrable over ,

corresponding to any  there exists a partition  of  such that

 whenever . If the points  are not in  we may add them

to  without affecting the conclusion about  above. Hence it is safe to
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assume that . Let  so that  is a partition of . Clearly the sum

 has terms coming from points of partition  and since each term in the

sum is non-negative, it follows that the sum

Hence there is a partition  of  for which the Riemann's condition of integrability is

satisfied. Therefore  is integrable on .

Next we see how the same result can be achieved via Cauchy's condition of integrability. Since

 is integrable on , for any  we have a partition  of  such that

 whenever . If  then we may add them in

partition  withou affecting the above conclusion and hence it is safe to assume that

. Now we choose partitions  in such a way that they have same points in

common with intervals  and  but their common points with interval  are

arbitrary. Also while forming the sums  we chose the points  in the

sub-intervals from  and  to be same for both partitions  but those from the

interval  are otherwise arbitrary. In so doing we observe that all the terms coming from

the sub-intervals of  and  cancel out in the difference  and what

remains can be expressed as  where  are arbitrary partitions of

 which are finer than the partition  of . It now follows that we have

whenever . Therefore by Cauchy's criterion the function  is integrable on interval

.

Note that the first proof requires that each term contributing to the sum  be

non-negative and hence the sum corresponding to a sub-interval  will never exceed the

sum corresponding to the full interval . But the second proof based on Cauchy's criterion

does not require this non-negativity. Here the argument is very clever and powerful in the

sense that from a given difference of two Riemann sums for the larger interval  it

generates a difference of two Riemann sums for the sub-interval  such that both the

differences are exactly the same, so that if the Riemann sums for the larger interval converge,

then the Riemann sums for the sub-interval also converge. There are definitions of integral

based on the idea of Riemann sum for which there is no corresponding concept of a Darboux

upper/lower sums and in that case the first proof does not apply.

Next we have the basic result that integral is an additive interval function:

If  is integrable on  and  then

This follows from the obvious observation that a partition of  can be always made finer to

include  and hence can be regarded as a union of a partition of  and a partition
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of  and conversely any partition of  can be joined with any partition of  to form a

partition of .

Let's now define

so that

whenever  is integrable on a closed interval containing points  irrespective of the linear

order of .

After these basic properties of the Riemann integral we next focus on two important classes of

functions which are Riemann integrable.

Integrability of Functions of Bounded Variation

Since a function of bounded variation can be expressed as a difference of two increasing

functions it is sufficient to tackle the increasing functions. Let  be an increasing function on

interval . Let  where  where positive integer  will be chosen

suitably and let  be the partition made by points . Clearly we have

 so that

when . Thus Riemann's condition is satisfied for a partition  of

. Therefore  is integrable.

What we have established above is that:

If  is of bounded variation in  then it is Riemann integrable in .

Since a function of bounded variation can have a countable number of discontinuities, it follows

that continuity is not necessary for integrability. However it turns out that continuity is

sufficient for this purpose.

Integrability of Continuous Functions

The fact that a continuous function is integrable on a closed interval belongs to the infamous

category of "results whose proofs are beyond the scope of the book/syllabus" and is

unnecessarily kept in that category. As I have mentioned earlier on this blog many of the

results in this category are actually much easier to prove entirely by remaining within the limits
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of the syllabus or the course contents, the same goes for the integrability of continuous

functions.

I will present two proofs of this fact one of which is highbrow and involves the concept of

uniform continuity (and therefore this result is normally left without proof in many books on

calculus) and the other one which requires no higher machinery than concept of derivatives.

The second proof is quite marvelous and surprising.

To keep the curiosity at a high level I will first present the proof involving uniform continuity.

This is simple enough once we understand clearly that continuity on a closed interval implies

uniform continuity on that interval. Hence given  we can find a  such that for any

 with  we have . Therefore if we have a

partition  of  with norm  then clearly  and therefore

and thus  is integrable on .

The second proof requires us to consider the Darboux integrals in more detail. More formally

we study the functions
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continuous at  then  and therefore if  is continuous in 

then both  and  have same derivatives in . This fact combined with the fact that 

are themselves continuous in  shows that  is continuous on  and its derivative

vanishes in . Thus  is constant on  and hence 

so that  and the upper and lower Darboux integrals are equal so that  is

integrable on .

To complete the proof we first need to establish that  are continuous on . Let

 and since  is continuous at  we have a  corresponding to a given  such

that  when . Let  then  forms a
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clearly we have  for all . It now follows
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Riemann integral (and the same proof applies to them for this property) hence we have

This shows that  is continuous from right at . Similarly we can prove that  is continuous

from left at . Same proof can be adapted for lower Darboux integral . The same argument

can be applied for the end points of interval  (the application being simpler as we have to

consider only the continuity from left or from right but not from both sides). So both the

functions  and  are continuous on . The same argument also shows that the ratio

 lies between  and  for all values of  with .

This implies that . Similarly . And therefore both  have same

derivatives in interval . This completes the proof of integrability of  without recourse to

the more abstract concept of uniform continuity. This particular proof has been taken from the

book Calculus by Michael Spivak.

Fundamental Theorems of Calculus

The above technique can be applied to show that:

If  is integrable on  and a function  is defined on  by the relation

then  is differentiable at  provided  is continuous at  and .

This result is more popularly known as the First Fundamental Theorem of Calculus.

What we wish to establish further is that irrespective of the fact that  is continuous or not, the
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and therefore  is of bounded variation in .

The function  defined above is said to be an anti-derivative or primitive of  and is the main

tool used for evaluating the Riemann integrals. This is established through the Second

Fundamental Theorem of Calculus:

If  is integrable on  and if there exists a function  defined on  such that

 for all  then

Let  be a partition of  and as usual let  be the

supremum and infimum of  on interval . By Lagrange's Mean Value Theorem we

have

for some point 

We clearly have  and therefore it follows that:

The above result holds for any arbitrary partition  of  and since  is integrable, it clearly

follows that

It is important to understand the difference between first and second fundamental theorems of

calculus. If we assume continuity of the function being integrated the second theorem becomes

a simple and obvious corollary of the first theorem. The importance of the second theorem is

that it is valid even when the function being integrated is discontinuous.

In the next post we will focus on Lebesgue's (prounounced Lebeg) criterion for integrability.
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