
COSC 362, Test #1A 
Solutions 

 
Note: On test #1B, problems #1, 2, and 4 are equivalent to the corresponding problems on test #1A; just 
switch all a’s and b’s in each. Problems #3, 5, and 6 are identical on both tests. 

 
1. a) Find a grammar that generates the set of all strings 𝑎𝑛𝑏𝑚 such that 𝑛 is odd and 𝑚 is 

even. 

Solution: One such grammar is as follows: 

𝑆 → 𝐴𝐵 

𝐴 → 𝑎𝑎𝐴 | 𝑎 

𝐵 → 𝑏𝑏𝐵 | 𝜆 

In this grammar, 𝑘 iterations of 𝐴 → 𝑎𝑎𝐴 followed by 𝐴 → 𝑎  will yield 𝐴
∗

→ 𝑎2𝑘𝐴 → 𝑎2𝑘+1. 

Similarly, 𝑗 iterations of 𝐵 → 𝑏𝑏𝐵 followed by 𝐵 → 𝜆 will yield 𝐵
∗

→ 𝑏2𝑗𝐵 → 𝑏2𝑗 

Thus, for any natural numbers 𝑘, 𝑗, we can generate 𝑆 → 𝐴𝐵
∗

→ 𝑎2𝑘+1𝑏2𝑗. This shows that 

our grammar generates the set of all strings 𝑎𝑛𝑏𝑚 such that 𝑛 is odd and 𝑚 is even. 

Comment: Another, simpler example some of you found is as follows: 

𝑆 → 𝑎𝐴 

𝐴 → 𝑎𝑎𝐴 | 𝐴𝑏𝑏 | 𝜆 

 

This grammar is also valid, with the obvious advantage that it requires one less variable.  

b) Give a simple description (one sentence should be enough) of the language generated by 

the grammar with start variable 𝑆 and productions 

𝑆 → 𝐴𝑏𝐴𝑏𝐴 

𝐴 → 𝑎𝐴 

𝐴 → 𝜆 

 

Solution: This grammar generates all strings in Σ∗ that contain exactly two 𝑏′s. (There are 

other valid descriptions, but this is the simplest one.) 

Comment: The answer “strings of the form 𝑎𝑛𝑏𝑎𝑛𝑏𝑎𝑛, 𝑛 ≥ 0” is technically incorrect, since 

the strings of a’s may be of different length. Writing “n” for all three implies that all three 

strings must be the same length. A similar, but valid, description would be “strings of the 

form 𝑎𝑚𝑏𝑎𝑛𝑏𝑎𝑝, where 𝑚 ≥ 0, 𝑛 ≥ 0, 𝑝 ≥ 0.”   



2. a) Design a NFA that accepts the set of all strings 𝑎𝑛𝑏𝑚 where 𝑛 is odd and 𝑚 is even. Do not 

use any “trap states” in your NFA. 

 

Solution: One such NFA is as follows.  

 
Note that there are other valid solutions. For example, we could redesign the above NFA as 

follows: replace 𝛿(𝑞1, 𝑏) = 𝑞3 with 𝛿(𝑞1, 𝜆) = 𝑞3, make q3 a final state, and make q4 a 

nonfinal state. The resulting NFA would accept the same language. (However, designing the 

NFA without 𝜆 −transitions makes conversion to a DFA easier…) 

 

b) Design a DFA that accepts the set of all strings 𝑎𝑛𝑏𝑚 where 𝑛 is odd and 𝑚 is even. (Note 

that a DFA for this language will require a “trap state.”)  

Solution: The NFA shown above is easily converted to a DFA by simply adding all of the 

“missing” arrows and connecting them to a trap state. (The trap state in the DFA is equivalent 

to getting “stuck” in the NFA.) This gives us the following DFA: 

 



3. Consider the DFA shown below, with initial state 𝑞0 and final states 𝑞1, 𝑞3. 

Answer each of the following questions about the language accepted by this DFA. 

a. Determine whether each of the following strings is accepted: 𝑎𝑎𝑎, 𝑏𝑏𝑏, 𝑎𝑎𝑎𝑏, 𝑏𝑏𝑏𝑎. 

(No work is necessary; just state which string(s) is/are accepted.)   

 

Answers: 

𝛿∗(𝑞0, 𝑎𝑎𝑎) = 𝑞1, so 𝑎𝑎𝑎 is accepted. 

𝛿∗(𝑞0, 𝑏𝑏𝑏) = 𝑞0, so 𝑏𝑏𝑏 is not accepted. 

𝛿∗(𝑞0, 𝑎𝑎𝑎𝑏) = 𝑞2, so 𝑎𝑎𝑎𝑏 is not accepted. 

𝛿∗(𝑞0, 𝑏𝑏𝑏𝑎) = 𝑞1, so 𝑏𝑏𝑏𝑎 is accepted. 

 

 

 

 

b. For what values of 𝑛 is the string 𝑎𝑛 accepted? Explain your answer. 

 

Solution: We can see from the diagram that the computation on a strings of 𝑎’s will end 

in state 𝑞0 if there is an even number of 𝑎’s, and in state 𝑞1 if there is an odd number of 

𝑎’s. Therefore, 𝑎𝑛 is accepted if and only if 𝒏 is an odd number.  

 

 

c. For what values of 𝑚 is the string 𝑏𝑚 accepted? Explain your answer. 

 

Solution: The computation on a string of b’s cycles through q2, then q3, then q0. We can 

see that 𝛿∗(𝑞0, 𝑏𝑏) = 𝑞3, and that 𝛿∗(𝑞3, 𝑏𝑏𝑏) = 𝑞3; that is, after the first two b’s, we 

cycle back to q3 every third b after that. So, the strings of b’s whose computations end 

in the final state 𝑞3 are 𝑏𝑏, 𝑏𝑏𝑏𝑏𝑏, 𝑏8, 𝑏11, 𝑏14, … In general, 𝑏𝑚 is accepted if and only if 

𝒎 is 2 more than a multiple of 3. (Or, equivalently, 𝑚 ≡ 2 (𝑚𝑜𝑑 3).) 

 

EXTRA CREDIT: (+5 points for the first person who turns in a correct PROOF of the following) 

Prove that this DFA does not accept any string with suffix 𝑎𝑎𝑏, but it accepts all strings with 

suffix 𝑎𝑎𝑏𝑎 or 𝑎𝑎𝑏𝑏. 

 

 

 



 

4. a) Convert the NFA shown below into an equivalent DFA.  

Solution: Following the conversion procedure 

covered in class, you should end up with 

something equivalent to the DFA shown in the 

photo below. 

 

b) Briefly describe the language accepted by this 

NFA – or, equivalently, by the DFA you found in 

part (a). (One or two sentences should be 

sufficient.) 

 

Note: there are several valid descriptions of this language. For example… 

Answer: The NFA (or DFA) accepts all strings 

that start with an a, end with a b, and do not 

have either bb or aaa as a substring.  

Equivalent answer: 

The NFA consists of all strings that start with 

a and end with b such that every b (except 

the last one) is followed by an a, and there 

are never more than two a’s in a row.   

 

Example: (set notation) 

The NFA accepts the “positive closure” of 

{𝑎𝑏, 𝑎𝑎𝑏} – that is, the set of concatenations 

of at least one string from the set {𝑎𝑏, 𝑎𝑎𝑏} 

(with repetition allowed).  (Or, simply, 

𝐿 = {𝑎𝑏, 𝑎𝑎𝑏}+). 

 

(Note: recall “positive closure” is the same as 

“star closure” except that it excludes the 

empty string. How could we modify the NFA 

in this problem to accept {𝑎𝑏, 𝑎𝑎𝑏}∗? )  



5. Show that the DFA below is minimal. (That is, show that no two states in the DFA are 

indistinguishable.)  

Solution: Start by noting that we have 𝐹 = {𝑞1, 𝑞3} and 𝐹′ = {𝑞0, 𝑞2}.  

Next, we’ll see if either of these pairs of states is 

distinguishable by strings of length 1 (that is, a or 

b): 

𝛿(𝑞1, 𝑎) = 𝑞0 ∉ 𝐹 𝛿(𝑞3, 𝑎) = 𝑞2 ∉ 𝐹 

𝛿(𝑞1, 𝑏) = 𝑞2 ∉ 𝐹  𝛿(𝑞3, 𝑏) = 𝑞0 ∉ 𝐹 

 

There is no distinction between 𝑞1 and 𝑞3 here, so 

these two states are not distinguishable by any 

string of length 1.  

 

On the other hand, with 𝑞0 and 𝑞2 we get the 

following result: 

 

𝛿(𝑞0, 𝑎) = 𝑞1 ∈ 𝐹 𝛿(𝑞2, 𝑎) = 𝑞1 ∈ 𝐹 

𝜹(𝒒𝟎, 𝒃) = 𝒒𝟐 ∉ 𝑭  𝜹(𝒒𝟐, 𝒃) = 𝒒𝟑 ∈ 𝑭 

 

The point here is that 𝑞0 and 𝑞2 are distinguished by 𝑏.  

 

To show that 𝑞1 is distinguishable by 𝑞3, we must look at strings of length at least 2. It turns out 

that these two states are distinguished by the string 𝑎𝑏: 

𝛿∗(𝑞1, 𝑎𝑏) = 𝛿(𝑞0, 𝑏) = 𝑞2 ∉ 𝐹 

𝛿∗(𝑞3, 𝑎𝑏) = 𝛿(𝑞2, 𝑏) = 𝑞3 ∈ 𝐹 

(Note: the string bb also works here.) 

 

Since the computation on 𝑎𝑏 ends in a final state starting from 𝑞1 but ain a non-final state 

starting from 𝑞3, we conclude that 𝑞1 and 𝑞3 are distinguishable.  

 

Thus, every pair of states in the DFA is distinguished by some string in Σ∗, which means the DFA 

is minimal.  



6. Prove by induction: for all positive integers 𝑛,  

∑ 2𝑖

𝑛

𝑖=1

= 𝑛2 + 𝑛. 

(Reminder: ∑ 2𝑖𝑛
𝑖=1 = 2 + 4 + ⋯ + 2𝑛; that is, the sum of the first 𝑛 even positive integers.)  

Proof (by induction): 

Base (or initial) step: When 𝑛 = 1, the given equation is 2=1+1, which is obviously true. 

Inductive Hypothesis: Assume ∑ 2𝑖𝑛
𝑖=1 = 𝑛2 + 𝑛 is true for all positive integers 1 ≤ 𝑛 ≤ 𝑘. In 

particular, assume the equation is true when 𝑛 = 𝑘; that is, we assume  

∑ 2𝑖

𝑘

𝑖=1

= 𝑘2 + 𝑘. 

It follows that  

∑ 2𝑖

𝑘+1

𝑖=1

= ∑ 2𝑖

𝑘

𝑖=1

+ 2(𝑘 + 1) 

= (𝑘2 + 𝑘) + 2(𝑘 + 1) 

= 𝑘2 + 3𝑘 + 2 

= (𝑘2 + 2𝑘 + 1) + (𝑘 + 1) 

= (𝑘 + 1)2 + (𝑘 + 1), 

which is exactly the given equation when 𝑛 = 𝑘 + 1. 

Thus, for any positive integer 𝑘, the equation is true for 𝑛 = 𝑘 + 1 if it is true for 𝑛 = 𝑘. 

Therefore, by induction, the equation is true for all positive integers 𝑛. 

 


