Math 105 Collected Homework \#5

Modular Arithmetic Tables

Due Friday, March 10-Monday, March 13
In class, we developed addition and multiplication for "mod 5" arithmetic and for "mod 4" arithmetic. For this assignment, do the same for mod 6 and mod 7 arithmetic, by completing each of the tables on the second page of this document.

If you like, you may write your answers on the following page, rather than drawing new tables on a separate sheet of paper. I don't necessarily need to see your work, but if you're unsure that what you're doing is correct, you may include your work in the space below on this page (or on a separate sheet, if you prefer). Let me know if there's anything in your work that you're not quite sure about, and I'll take a closer look at it for you.

Also, determine whether each of the tables represents a "group" - that is, determine whether each set has closure, identity, and opposites under the operation being considered. Explain your reasoning-if it's a group, clearly explain why; if it's not a group, give a specific example that contradicts one of the three properties (opposites, closure, identity) a group must satisfy.

$\bmod 6$ addition							
	0	1	2	3	4	5	
0							
1							
2							
3							
4							
5							

mod 6 multiplication

mod 7 multiplication

