
Teach Yourself Limits in 8 Hours: Part 1

Introduction

While looking at certain limit problems posed in math.stackexchange.com (henceforth to be

called MSE) I found that most beginners studying limits are living in a fantasy world consisting

of vague notions, infinities and what not. I too had my share of such experiences during my

time as a student learning calculus but I was lucky enough to get over with this phase very

quickly through the help of "A Course of Pure Mathematics".

Regarding the answers posted on MSE I found that most of the answers although correct were

not suitable for beginners studying limits. Some answers suggested that their authors

themselves had the same vague notions but they somehow managed to avoid their pitfalls.

Some other answers were using sophisticated techniques which involved deeper concepts than

the concept of limits itself. And there were some heated arguments favoring one approach over

another.

Therefore I decided to write a series of posts providing a step by step approach to solving limit

problems encountered in an introductory calculus course. I have tried to split the whole topic

into  posts and I believe that the gist of each post can be assimilated in not more than 

hours and that's the logic behind the title of this series.

Contrary to my policy on this blog, I will prefer to avoid rigorous/formal proofs of the various

results which I present here. This is mainly because a beginner in calculus may not be that

interested in proofs and presenting these proofs at the start might serve as a detractor in

learning the basic techniques. However some of the proofs will be provided in last post in the

series for the sake of completeness.

Concept of a Limit

Limit is a very simple idea which can be used to study the behavior of a function when its

argument takes values around a given value. Roughly speaking there are occasions when it

makes sense to study the behavior of a function  defined in a neighborhood of a certain point

 (but not necessarily at that point , for example the function  around point

). For study of such situations the concept of limit was introduced. We try to figure out if

the values of a function  tend to lie around a certain particular value when the value of 

lies around a certain value. The formal definition of a limit is bit clumsy but still needs to be

provided:

Limit as 

Let  be a function defined in a certain neighborhood of point  (but not necessarily at ).

Then a number  is said to be the limit of  as  tends to  (written symbolically as

 or  as ) if for any given number  it is possible to choose

a corresponding number  such that  whenever .
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The above definition is a bit complicated and hence some detailed explanation and remarks are

necessary. First of all it should be noted that the limit of the function  as 

(sometimes also called limit of  at ) has has nothing to do with the value of  at  but has

everything to do with the values of  near . The part  ensures that 

and also covers all values of  which are near  (the distance between  and  being less than

). We can thus say that a limit of a function is not necessarily a value of the function, but it is

defined using the values of the function. At the same time the limit  may be one of the values

of the function  (say for example when the function  is a constant function).

The primary objective of the concept of limit is to study the behavior of a function  near some

specific point  and we can loosely say that it tries to find out a pattern/trend in the values of

. The pattern sought after is to check whether all the values of the function are near some

specific number  when we consider values of  near specific point . If we can ensure that all

values of  can be made to lie as near to  as we please for all values of  sufficiently near to

 then only we say that the limit of  is  as . Thus in the definition above the

inequality  serves as a goal (and this in reality is a tough goal which has to be

achieved for every arbitrary ) and our means to achieve the goal is to take  sufficiently

close to  (or better say that we take  as close to  as is needed to achieve the goal) and this

closeness is measured in terms of .

As one can easily observe the definition is formulated in terms of a check. It allows us to check

whether a given number  is or is not the limit of a function  when . Prima facie, it

does not allow us to figure out (or calculate) the limit of a function. However the above

definition has turned out to be very fruitful and it allows us to derive various useful results

regarding limits which can then be effectively used to calculate limit of a function. Also one

should note that the basic prerequisites for  to exist is that  must be defined

in a certain neighborhood of  (except possibly at ).

As a simple example we can show that

This is more or less obvious if we use the definition and note that here  is sufficient.

Another point to note is that if  exists then the function  is bounded in a

certain neighborhood of . This is easy to follow if we put  in the definition and note

that there will be a  such that  implies that  i.e.

 and clearly this shows that  is bounded in the interval

.

Also note that when  we may have the case that  takes values greater than . This is

denoted by . If  takes values less than  then we write . These give rise to

f(x) x → a

f a f a

f a 0 < |x − a| < δ x ≠ a

x a x a

δ

L

f f(x) = L

f

a

f

L x a

f L x

a f L x → a

|f(x) − L| < ϵ

ϵ > 0 x

a x a

δ

L f(x) x → a

f(x)limx→a f(x)

a a

x = alim
x→a

δ = ϵ

f(x) = Llimx→a f(x)

a ϵ = 1

δ > 0 0 < |x − a| < δ |f(x) − L| < 1

L − 1 < f(x) < L + 1 f(x)

(a − δ, a + δ)

x → a x a

x → a+ x a x → a−

Teach Yourself Limits in 8 Hours: Part 1 | Paramanand's Math Notes

2



left-hand and right-hand limits of  as . Thus we say that  if for any

 it is possible to find a  such that  whenever . And

we write  if for any  it is possible to find a  such that

 whenever .

Looking at the definitions of limits given above we see that  exists if and only if

both right-hand limit  and and left-hand limit  exist and are

equal. These concepts of left-hand and right-hand limits are useful when the definition of a

function is different for values of  and .

Limit as  (or as )

It is also important to discuss another limit to study the behavior of a function for large values

of its argument. Then we define as follows:

Let  be a function defined on an interval of type  i.e.  be defined for all values of 

satisfying . Then a number  is said to be the limit of  as  (and written

symbolically as ) if for any given number  it is possible to find a

corresponding number  such that  whenever .

Let  be a function defined on an interval of type  i.e.  be defined for all values of 

satisfying . Then a number  is said to be the limit of  as  (and written

symbolically as ) if for any given number  it is possible to find a

corresponding number  such that  whenever .

It must be clearly understood that the symbol  used in above definitions has a

meaning only in the context of these definitions and is not a number which can be

operated upon via  (or many other operations applicable to numbers).

Ignoring this fact is the source of all confusion prevailing in introductory calculus. In general

the symbol  is given a meaning via special definition such as above and its use is valid only

within the context of any such definition.

We now establish the fundamental limits

Clearly in order that the first limit is  we must be able to find a number 

corresponding to any given number  such that  whenever . Now we

can see that if  then  and this can be made smaller than  if

. Thus we can set  and the definition above allows us to say that

. In a similar manner we can handle .

Non-existence of a Limit

It is important to understand that there may be scenarios where we are not able to find any

number  satisfying the definition of limit given earlier. In this case we say that the limit of a
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function  does not exist as (or  or  as the case may be). We also

need to study various ways (via examples) in which a function may fail to have a limit. We

have the following possibilities (these are given for the case  but the reader may

formulate the corresponding scenarios for  and ):

It may happen that for any given number  it is possible to find a number 

such that  whenever . In this case we write  as

 (note that this is another use of symbol ).

1. 

It may happen that for any given number  it is possible to find a number 

such that  whenever . In this case we write  as

.

2. 

None of the above happens. In this case we say that the function  oscillates as .

If  is bounded in neighborhood of  then we say that  oscillates finitely otherwise

we say that  oscillates infinitely.

3. 

We offer certain simple examples. It is not difficult to show that  as  and

 as . The examples for oscillating functions are bit tricky to understand.

Let us observe the function  in the neighborhood of . Lets first analyze

the case for . If we put  then  and if 

then . Hence we can see further that given any  there exist some values of 

with  for which  and some other values of  say  again satisfying

 for which . Thus we don't have any number  which can satisfy the

limit condition of  for all  with . Same is the case when

. Since  is bounded the function oscillates finitely.

The same example can be modified to give a function which oscillates infinitely as .

Clearly we see that  as  hence  is unbounded and

we can show (using arguments similar to those given in last paragraph) that  oscillates

infinitely as .

It is instructive to study a similar function . This function tends to limit

 as . This is because  and

hence the expression  can be made less than  by making  and thus we can

choose  and satisfy the definition of limit.

We don't offer a plethora of examples here as it would unnecessarily increase the length of the

post. Whatever basic concepts are required have been presented and we have provided very

simple examples in which a beginner won't face any difficulty. Before concluding this post we

summarize the important results and examples we have developed in this post:

For  to exist it is absolutely essential that

 is defined in a certain neighborhood of  (except possibly at )
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If  exists then  is bounded in a certain neighborhood of 

 as  and  as 

Function  oscillates finitely as 

Function  oscillates infinitely as .

In the next post we will study certain limit formulas and their applications.
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