RiverGame - a game testing tool using artificial
intelligence

Ciprian Paduraru
Dept. of Computer Science
University of Bucharest, Romania
ciprian.paduraru @unibuc.ro

Miruna Paduraru
Electronic Arts &
Dept. of Computer Science
University of Bucharest, Romania

Alin Stefanescu
Dept. of Computer Science
University of Bucharest, Romania
alin.stefanescu@unibuc.ro

miruna.paduraru @drd.unibuc.ro

Abstract—As is the case with any very complex and interactive
software, many video games are released with various minor or
major issues that can potentially affect the user experience, cause
security issues for players, or exploit the companies that deliver
the products. To test their games, companies invest important
resources in quality assurance personnel who usually perform
the testing mostly manually. The main goal of our work is
to automate various parts of the testing process that involve
human users (testers) and thus to reduce costs and run more
tests in less time. The secondary goal is to provide mechanisms
to make test specification writing easier and more efficient. We
focus on solving initial real-world problems that have emerged
from several discussions with industry partners. In this paper,
we present RiverGame, a tool that allows game developers
to automatically test their products from different points of
view: the rendered output, the sound played by the game, the
animation and movement of the entities, the performance and
various statistical analyses. We also address the problem of input
priorities, scheduling, and directing the testing effort towards
custom and dynamic directions. At the core of our methods,
we use state-of-the-art artificial intelligence methods for analysis
and a behavior-driven development (BDD) methodology for test
specifications. Our technical solution is open-source, independent
of game engine, platform, and programming language.

Index Terms—game testing, automated testing, BDD, deep
learning, reinforcement learning, computer vision

I. INTRODUCTION

The video game segment is one of the leaders in the
entertainment industry by looking at the revenues obtained
in recent years [[1]. The diversity of devices on which games
need to be deployed, the continuously increasing complexity
of game engines and internal tools, put several challenges [2]]
for developers to deliver quality products within tight release
deadlines.

In this context, testing is a major activity in the game
development process, with big companies in the game industry
employing hundreds of testers for their flagship products.
However, most of the resources are directed towards manual
testing and this is understandable given the high complexity
and interactivity of the games. Nonetheless, talking to several
industrial partners in the domain and from our own experience
in industry, we identified plentiful unexplored opportunities for
test automation using the latest methods and advancements in
artificial intelligence.

In this paper we report on several novel contributions that
we implemented in our RiverGame testing tool:

o Identification of several aspects that are usually not
automated during game testing and several ideas on how
to address them.

o A reusable framework architecture and implementation
(to the authors’ knowledge, the first in the field at the
moment of writing) that is independent of the engine and
deployment platform (i.e., it works on different devices
such as PCs, game consoles, or different operating sys-
tems), and programming language.

o A methodology that lets non-technical stakeholders write
tests and expected behaviors for the features of the game
under test. For this, the framework uses the Behavior-
Driven Development (BDD) methodology and imple-
ments the separation of concerns concepts. This allows to
use different programming languages and to be agnostic
to the deployment platform.

¢ A scheduling system for tests that is automatically man-
aging in the background their execution order depending
on the availability and the desired rate of execution
between them. Thus, by selecting different priorities, the
user is guiding the process of tests execution through
different areas of the game under test.

¢ Sound processing techniques that automatically evaluate
the sounds being played during the game without human
involvement.

o Automatic evaluation of statistical metrics registered by
the end-user. The purpose of this is to test statistically
metrics such as frames per second, memory footprints,
quality of different gameplay systems over the entire
game sessions or a time-limited period.

o Improvement of the performance of the evaluation pro-
cesses by using different methods for the pose recognition
and objects detection, replacing existing models based on
Yolo [3[] with EfficientNet [4] and OpenPose [5] with
MoveNet [6].

The strategies used at the implementation level are indeed
novel, because at the technical level many commercial
public game engines (e.g., Unity, Unreal, etc.) have their
own solutions for performing unit or functional tests, but

they differ and generally do not try to solve the problem
of replacing the human user performing the tests with an
Al agent analysing the visual state of the running game,
which we discuss in this paper. Many developers have
their own game engine or want to switch between public
engines without having to change the test code.

We evaluated the capabilities of our tool on the game engine
Unreal Engine 4[1-] by deploying our tool as a plugin via the
official demos Shooter Game and Car Configurator from Epic
Marketplace [7], an open-source 3D tank game based on Unity
https://github.com/AGAPIA/BTreeGeneticFramework| [8]], and
two Electronic Arts well-known games, Start Wars Rogue
Squadron and FIFA 22. As an important observation, our
framework has a plugin architecture and can be reused with
any other engine or game.

Note that we previously published a position paper about
the first initial version of the tool in [9]. There are major
differences between our tool paper and the previous workshop
position paper, which only presented a preliminary architecture
and the ideas that we planned to pursue. Most of the material
presented in this paper is new.

Our paper is organized as follows. The next section de-
scribes related work. Gaps and difficulties in automating the
testing process are outlined in Section The proposed
methods are defined in Section [Vl Architectural and technical
implementation details are presented in Section [V] Evaluation
is described in Section [VIl and lessons learned in the last
section.

Our prototype framework is available as open-source at:
https://github.com/unibuc-cs/game-testing|

The demo video of our tool can be viewed online here:
https://youtu.be/qFfWvaLLtOUO.

II. RELATED WORK

a) Al agents used to simulate human-like behavior in
games: Several papers described how to use bots that can
play a game as close as possible to real humans. In general,
users interact with games by executing a sequence of actions
on observed scenes. Thus, one abstract way to define their
behavior is to use a Markov Decision Process (MDP). This
is one of the reasons for studying methods for playing games
with reinforcement learning (RL) techniques, as existing recent
literature demonstrates. The authors of these previous works
typically connect RL techniques to Monte Carlo Trees Search
(MCTYS). E.g., this is the case for [[10], which demonstrates
how Sarsa(A) RL-method is used for the classic game of Pac-
Man. Similar works are [11]] for Unreal Tournament, [[12]] for
Super Mario using neuroevolution, [[13] for a 3-match game,
or GVG-ALI [14] for competition agents.

Other works use the idea of penalizing agents that deviate
too much from human behaviors through reward functions as
presented in [15]], [16], [11]. Instead of providing manually
reward functions, to make sure that the learned policy mimics

Uhttps://www.unrealengine.com

human behavior, Inverse Reinforcement Learning [17] is used
to extract the reward functions from real users sequences
of actions. The papers presented above incorporate domain
knowledge to speed up the bots training and their quality, but
there are also results showing that game bots can be trained
only from images [18], [19]], [20].

b) Al agents used for testing: The work in [21] uses
Inverse Reinforcement Learning to extract reward knowledge
from human user trajectories, then it creates a generative test
oracle that can produce similar kinds of trajectories.

Testing Ul interfaces for Windows 10 was studied in [22]
using a combination of RL methods (Q-learning) and Graph
Neural Networks (GNN) to represent the state of the appli-
cation. Adventure-like game testing using 2D graphics using
similar RL methods combined this time with memory was
reported in ICARUS framework [23]]. As noted in [24]f], the
previous work in the literature was focused more on making
better agents for game playing, rather than testing. However,
their work uses RL and evolutionary algorithms to evaluate
as many states of the game as possible for putting the game
in various contexts. Continuing on the idea of generating tests
using RL agents, the work in [25] extends the previous idea in
3D games and tries to create a coverage heatmap of situations
analyzed at any time during the testing process.

Finally, another way to define agents [26] that can test
games is described in Aplib [27], where the authors create
a Domain Specific Language (DSL) composed of actions,
goals, and conditions that define the agents’ objectives and
behaviours in the game and their expected actions. It can
be seen as functional testing for games, written for games
implemented in Java.

IIT. MOTIVATION FOR OUR WORK AND GAPS IN THE
AUTOMATED GAME TESTING FIELD

Based on discussions with game industry partners, we
compile below a few requirements, gaps, and aspects that take
significant human effort during the manual tests performed by
the QA department. We explain them through examples:

o UI Testing: If the user shoots someone, did the score
increase on the Head Up Display (HUD)? After the game
ended, did a certain menu appeared on the screen? Is the
ammo displayed on the screen in sync with the value
in the game memory? E.g., see a screenshot from our
demo on the left of Fig. |I} where we check if the ammo
displayed on the HUD at a given 2D bounding box (in
that case, 50) is the same as the one expected and stored
in the backend. If the user changed the weapon, is the
cross icon on the screen positioned correctly? E.g., see
a screenshot from our demo in the middle of Fig.
where we perform basic cross detection in our demo using
simple visual feature matching methods with the classic
OpenCV framework [28].

« Animation testing: The agent stays in place and watches
an Al character with walk animation. Is it moving in the
right direction over a sequence of NV frames? E.g., see a

https://github.com/AGAPIA/BTreeGeneticFramework
https://github.com/unibuc-cs/game-testing
https://youtu.be/qFfWvaLtOU0
https://www.unrealengine.com

Fig. 1: Visual elements checked automatically after triggering different tests in the official ShootingGame demo from Unreal 4
game engine. For example, in the left figure, the game testing agent used the weapon to fire a fixed number of rounds. The test
checks if the visual text representing the new ammo amount is correct. In the right picture, the game testing agent triggered a
weapon change test and checks visually if the weapon-cross icon on the screen is the correct one for the new weapon selected
and the camera’s zoom level. The new weapon selection should correspond to the icon in the bottom right of the screen.

screenshot from our demo in Fig.[6] showing the skeleton
of an enemy agent tracked using MoveNet [6].

o Sounds: Was a specific sound played in the last N frames
as requested? The problems reported usually by industry
partners in this area are sound assets that are not playing
at all or are interrupted by other sounds without a correct
reason.

+ Rendering testing: Assume the user is being shot or in
a low health condition. It is expected to see some post-
processed effects on the screen. Are they visible? When
using the binoculars item, is the camera centered correctly
on the screen?

o Physics: A game agent could push an object over a
sequence of frames. Does the collision system respond
correctly?

o Gameplay: If a game agent is re-spawned on a map, does
it respect a given set of spawning conditions? E.g., does
it have a clear view and not in front of a wall or starting
right away in front of an enemy? After an agent pressed
the mapped button to enter a car, do the visuals on the
screen look like they are inside the car?

All of these types of tests are currently performed by human
users (testers) who analyze the visual feedback of the game.
This process is expensive and often not enough testing can
be done before products are released. Our motivation is to
automate parts of this process as much as possible, reduce the
costs, and scale it with hardware resources that are generally
easier to get than human resources.

IV. PROPOSED METHODS

As summarized in Section the literature focuses on
implementing game agents with the goal of either achieving
better results than humans or testing games by improving the
coverage of states in game environments. Our work instead
focuses on a different topic: leveraging existing work on
creating and coordinating test agents to further improve the

automation of game testing. To this end, we propose a set of
methods and a framework with the following features:

o Automatically test the rendered output content of the
game using computer vision techniques to associate the
expected behavior in the game with the visual feedback
that the game application actually generates. Our idea is
to use automated scripts or Al agents that play a game
(which we refer to hereafter as game testing agents) and
then use both the visual output images and (optionally)
the internal game state to link the specified expected
behavior to the action that the game testing agent takes
in certain states of the game.

o Automatic sound testing to understand whether the
game’s sound feedback is correct, rather than relying on
human efforts to evaluate it; the methods used imply both
classical and natural language processing (NLP) methods
for analyzing the sound content or text behind the played
voices.

o Automatically monitor and report certain metrics within
the game, such as frames per second (FPS), memory foot-
print in different scenarios, or custom registered metrics
by the developers.

A. Tests description methodology

Behavior-driven development (BDD) is used in soft-
ware development projects to promote collaboration between
different stakeholders such as developers, QA, and non-
technical or business participants. It is typically used within
an agile development methodology. BDD is also successfully
used for testing purposes, as evidenced by the literature
and the variety of open-source or commercial solutions that
use it. For this project, we used the Behave libraryﬂ

In software testing, BDD extends the test-driven
development by allowing both developers and non-
programmers (e.g., quality assurance members on a team)

Zhttps://github.com/behave/behave

https://github.com/behave/behave

to use natural language combined with the language of
domain-driven design to describe the purpose of features
within a software project. Using this technique, both technical
and non-technical stakeholders can discuss and understand
the features and expected outcomes in specific scenarios.
The natural language that describes the scenarios is called
Gherkin [31]]. An example of a test written in this language
and methodology can be found in Fig. The motivation
for using BDD and natural language to write tests in game
programming comes from two directions: (a) Many of the
QA staff have no programming experience, so having a
natural language with a guiding library of possible choices
for writing tests helps. (b) Tests need to be reusable. The
guiding library of test description language components
is the link between the development team, which exposes
the functionality needed for testing, and QA, which uses them.

Basic understanding of BDD usage: The example in Fig.
[shows only some features of the tests specified in BDD
and Gherkin. The tag keyword, such as @Sound, denotes a
category for the test. It is important to group the tests in
categories for the sampling methods that decide in which
directions more or less computational resources should be
spent for the tests. The general pattern of a test specification
is to define three main steps:

1) Set the context of the application. In our example, the
state of the application under test must have a launched
game instance in order to run the test. It is specified with
keywords such as Given, And, or But. More complex
examples that use a similar context can be specified with
keywords: Background or Outline.

2) Set when the test should start. This is the trigger to start
the test. In this example, we start the test when certain
conditions occur, as shown in the table in Fig. @ A test
can be valid multiple times during runtime.

3) Expected test outcome. Specifies the correct expected
results of the test, using T hen keyword.

The implementation library for each of the steps is created
by developers in a different source code file to hide imple-
mentation details that other stakeholders are not interested in.
In the given example in Fig. 3] we use a data table to reuse
the same test for a parameterized set of contexts, triggers and
expected results. These parameters become input arguments
to the source code of the test implementation. More examples
can be found in our repository. BDD can also be applied for
animation or vision tasks in a similar way. A test definition
for animation testing would involve calling external code to
first project the 3D agents onto the 2D screen space and then
analyze their motion from either a high-level perspective (e.g.,
testing the direction of motion) or from a lower-level skeletal
motion reconstruction. A similar method can be applied to
computer vision analysis, by invoking inference on pre-trained
deep neural models or classic OpenCV techniques.

Feature: Sound testing

@5Sound
Scenario: Check dialogs
Given we start a game instance
And we loaded sub-level {Missionid}
When {Entityld} started {Behaviorld}
Then we should hear {Soundid} with similarity abowve {SimT}

Examples:
Missionld	Entityld	Behaviorld	Soundid	SimT
mission1	aircraftw	startEngine	snd_startAirEngine	0.75
mission2	Wedge	startCommentl	comment_1	08

| mission2 | gameMusic| missionStart
| mission1 | aicraftw | hitByEnemy
| mission2 | aicraftw | crashed

snd_backgroundmiss2	0.75
comment_2	08
snd_crashAirplane	0.75

Fig. 2: Sound test template and data table defining the set
of instances of the test. The specification is given in natural
language. The context parameter is used to setup the context
between tests. For example, in the Given step implementation,
the code could cache information about the components of the
game instance.

@then()
():

assert context.sndCheck. (SoundId, context.recordedSound) >= SimT

Fig. 3: Implementation source code of the expectation step.
External components invoked to do separation of concerns.

B. Tests scheduling and prioritization

We denote by T the set of all tests available and defined
using the method described in Section Considering
a game test agent exploring the application (regardless of
the method, e.g. scripted, classical Al, RL agents, etc.), the
runtime component of the game checks the internal game state
against the Given and/or When clauses (triggers) specified
in each test € T and creates a compatible subset for each
frame: T.ompat- Thus, any test € T.ompet can be executed
at that time. When test is selected for execution, the playtest
agent performs the specified action given in the When and/or
Then clause group of the test. The expected correct result is
determined by evaluating the specifications within the Then
clauses.

Our strategy is to tag the tests and prioritize them using a
custom tool that allows the user to select the priority of each
test group or individual. This is important because the user can
target the tests to specific areas of the game where problems
are common or that might be affected by the newly added
code. Priorities can be adjusted dynamically, even at runtime
(see supplementary video material for a visual example). Since
there needs to be a mapping from the game mechanics to the
abstract representation of a test specification that we use in
the framework, developers could encourage rapid writing of
test specifications by building a visual tool interface.

Our prioritization tool also allows users to organize tests into
categories and assign the execution rate of each test category
or individual tests, test € T, test,qi. Each t € T has a

scheduled time test; of when it should be executed next. The
schedule is stored in a priority queue PQ7, sorted by the
scheduled time. Thus, at each system time C'urrentTime, the
framework executes Algorithm [I]to evaluate the compatible set
of tests at that time, T¢ompaqs- Note that the executed states are
rescheduled. This mechanism is also known as time-slicing
scheduling in operating system environments.

C. Methods used for computer vision analysis

Our framework deploys various external technologies based
on computer vision to test the expected behaviors. Depending
on the purpose of the user tests, the technologies currently
used can be replaced or new ones can be added, similar to
a plugin architecture. Below we outline the methods used to
cover the testing requirements for covering the tests proposed
in Section [[II

Currently, the framework uses Tesseract OCR from OpenCV
[28] for text recognition. For testing purposes where the pres-
ence of objects or specific features in the image recognition
output needs to be located or proven, either template matching
[28]], a model such as the one described in EfficientNet [4]],
or scene segmentation methods such as the one presented in
[32], are used. Examples of how these methods and tools are
used to verify the correctness of the tests in a demo game can
be seen in Fig. [I] and Fig [f]

For detecting changes in the environment (e.g., the test
wants to check if the environment has actually changed
after pressing a button to get into a vehicle after a certain
time), we re-trained the [3|] model with specific object classes
(visual features) for each individual environment. An example
is shown in Fig. 4 During inference, when the test wants
to evaluate whether the displayed image is specific to that
particular environment, the model returns the bounding boxes
of the detected objects. If the number of detections is higher
than a fixed threshold, it means that the environment change
was successful.

To cover tests that need to analyze the movement of objects
based on visual output (e.g., to confirm that a physical object
has been moved or that an entity is moving in a certain
direction), a simplification arises from the fact that human
users (testers) see and interpret the sequence of frames in 2D
space, then reproject it internally in the brain as being in the
3D space. Thus, to analyze if, for example, a particular object
is moving towards a certain direction, considering as input
only the visual output, it suffices to build the representation
of the objects from the 2D image space, reconstruct a 3D
space and analyze the motion of the objects in there. The
reconstructed 3D space does not have to contain the ground
truth coordinates, but needs to keep the correctness of the
relative positions of the analyzed objects.

Technically, we perform the following steps to test the
correctness of the movement of objects:

1) For each scene that needs this type of testing, we take
four points of static objects that are rendered on the
screen. For these points, we have both the ground truth
location in 3D space from the game state representation

(source localization Si,.) and the position on the 2D
output image where these points are rendered on the 2D
visual image output space (target localization Dj,.). A
homograph matrix transformation [33|] H is constructed
that maps the points from S, to Dj,.. Using the inverse
of this matrix H~!, arbitrary points from the 2D space
of the visually rendered image can be projected back
into 3D space (with some noise).

2) The 2D bounding box coordinates of the objects of
interest in the test scenario are obtained using the
EfficientNet [4] method, Obj?P%ez

3) The coordinates of the bounding boxes are projected
back into 3D space using the matrix constructed in Step
1: Obj?Dbbox - Hfl(ObinDbbom).

4) Motion analysis is then performed in this reconstructed
space to verify that the visual output matches the internal
game state and the desired behavior. One such example
is shown in Fig. [}

D. Methods for animation testing

After analysing the problems with animations in games,
we concluded that the main problems in this context are that
characters freeze (do not move) or move in a different direction
from the user’s requested input. To address these issues, our
method for testing animations consists of two parts:

« First, we determine a set of fixed points in the scene using
the methods described in Section [V-Cl We consider these
as reference points of the scene. An example of a result
of this step from the FIFAZZE] game is given in Fig. @

o After a series of transformations (documented in the same
figure and in our source code repository), the system
obtains the skeleton of the character in each frame of the
test using the MoveNet [6] method. The trajectory of the
skeleton related to the fixed point found in the first step is
compared to the trajectory desired by the user. Usually,
the specification of tests involves a selection of a time
period for the motion test, e.g. between 30 — 180 frames.
Note that the skeletal method used can be applied not
only to humans, but to any entity that can be abstracted
with a skeleton, including animals, vehicles, buildings,
static objects in general, etc.

E. Methods used for sound testing

Our framework can automatically test whether the sound
generated by the game is correct or not (with some degree of
error). The methodology of exposed tests is to have the client
create a batch of tests that start on certain triggers (e.g., when
a person starts talking, an engine starts, etc.), record the audio
capture from an internal device, and then check whether the
recorded output has a certain degree of similarity to the ground
truth in the database. A set of these tests is shown in Fig. [2]

From our experiments, we concluded that there are two
different ways to achieve good sound comparability, depending
on the use case.

3https://www.ea.com/en- gb/games/fifa/fifa-22

https://www.ea.com/en-gb/games/fifa/fifa-22

Algorithm 1 Test set scheduling in the framework

1: Input: PQr, AppState, the application state

2: repeat(time CurrentTime of application)

3: /I Create the test suite that are ready for execution and have the compatible context in AppState:
4 ReadySet = {test € PQr | CurrentTime — test; <=0}

5 ReadyCompatSet = {test| teste ReadySet andteste T_compat}

6: /l Remove the set from the priority queue:

7 PQr = PQr — ReadyCompatSet

8 /I Step 1: Execute the tests now:

9 for test in ReadyCompatSet do

10: res = Execute(test)

11: (depending on the test type, it can either update to continuing progress, or just write some output value)
12: OnResultsReady(test,res)

13: end for

14: /I Step 2: Re-schedule the removed tests by their test rate parameter:

15: for test in ReadyCompatSet do

16: test; = CurrentTime + test,qie

17: PQr = PQr Utest

18: end for

19: until End of application life

Fig. 4: The image shows the detected visual features (bounding boxes) after an environment change, when one expects to be
in different vehicles after the game testing agent has triggered an action key. The left image is from the interior of a car, and
the recognized feature classes are: mirrors, steering wheel, and navigation board. In the middle, it can be seen the interior of
a bus. The detected features are two bus seats and two particular light bulbs. In the right image, it is displayed the interior of
an airplane, where two rudders, an info display and a speed controller are detected. The number of detection thresholds used
in this particular case is two. The demo is based on the assets from Unreal 4’s C'arCon figurator demo and some additional
assets in a custom scene. We used different camera angles to also test whether or not the newly trained recognition model
overfits and affects its performance (Section .

Fig. 5: The image shows the detected bounding boxes of the objects of interest and the trajectory of the projectile in a scene
from the Unity demo [8]. As mentioned in Section [[V-C| the purpose is to visually verify the correctness of the projectile
movement from source to target. Although the perspective looks isometric, it should be noted that the representation of the
game state representation and the rendering are fully 3D.

Fig. 6: The process of detecting the correctness of the played animation against the user input in the FIFA22 game. On the
left, our first step is to detect key points of the scene using raw computer vision methods and calculate the homographic
transformation from 3D space to 2D. In the middle of the image, it is shown an intermediate step of the process (more details
about all the steps involved can be found in our source code repository), which detects the contours of the character and
correctly finds the player controlled by the user. On the right, the method zooms in on the controlled player and runs MoveNet
to detect the player’s skeleton. Then, for a requested sequence of N Frames, the system records the movement with respect to
the detected scene’s keypoints and compare them with the user’s input trajectory to evaluate the correctness of the movement.

o Testing background music and effects (e.g., an engine
noise on startup, an explosion, the firing of a gun).
Behind the scenes, we use the Librosa library [34] to
read sound data and then convert it from the time domain
to the frequency domain using the F'F'T transform. We
use a default sampling rate of 44.1 kHz, and each
frequency bin used has a size of 1 Hz, with each bin
containing the average of the original frequencies in the
corresponding range at the end. To compare which sample
should have been played in ground truth and which was
actually played, we compare the difference between the
two spectrograms. A similarity check for the background
music in the tank game is shown in Fig.[7} The hypothesis
of whether or not it is the same class is tested using a
final statistical T-test.

o Sound testing for in-game character dialogs. In this case,
we are relying on NLP solutions to convert the played
voice into text. We then compare the text similarity
between the output of the conversion model and the text
in the database entry corresponding to the voice. For the
model itself, we use Facebook’s wav2vec 2.0 model [35],
which uses Deep Learning and Transformers methods
to convert the voice to text. For the second part of
checking the similarity between the output of the model
and the entry in the database, we simply consider the
ratio between the original text and the longest common
substring (LCS) between the two tests.

F. Evaluating registered metrics

Games typically need to store a set of statistical metrics
over extended play sessions. Common functionalities in any
game are things such as frames per second (FPS), memory
usage, the number of entities in a given area of a map,
etc. Other functionalities relate to statistical regression of
gameplay, difficulty, or Al. For example, in a soccer game,
it would be desirable to evaluate the dribbling or shooting
abilities of the Al agents during a series of consecutive games
for each difficulty level. Then, the test specification could
claim that the results are not within a valid range specified in

the Then clause (a similar test specification with a data table
of conditions and parameters is shown in Fig. 2] The same
automatic evaluation and conditions can be performed for all
ranges with similar variables or parameters. To implement
this, we store persistent data within the plugin framework
component that is deployed on the game side. The user can
specify the time rate for collecting these variables (e.g., the
FPS metric typically has a cadence of 1 frame, while statistics
such as those collected by Al systems can be collected at
10 frames). For more details, see our supplementary video
material and Section [V]

V. ARCHITECTURAL AND IMPLEMENTATION LEVEL

It is important to do separation of concerns as much as
possible at the architectural level, for two main reasons we
have identified:

« It is expected that games will be tested on different plat-
forms such as embedded devices (e.g., mobile devices,
consoles), PCs, web browsers, etc. In addition, testing
should often be performed on different machines other
than the application under test, since the deep network
architectures used to evaluate correctness for some of the
tests require different computing power, e.g., a specific
class of GPUs.

e The decoupling of concerns is an important adoption
factor. For example, different games may have different
requirements, so managing components through inter-
faces and reusability can be a valuable benefit.

The overview architecture is shown in Fig. [§] The imple-
mentation of the game application usually provides an API for
interacting with the testing side and possibly mocking some
of its internal components. In the following, we call this API
and its interaction with the game’s internals the Model (right
side of Fig. [§).

The framework architecture consists of three main compo-
nents, described below:

o Framework - Tests Specifications. The test scenarios are

written in different files and are generally visible to all
stakeholders. The source code implementation can be in

Spectrograms - original vs recerded (with threshold)

10

o8

=
@

Scaled Amplitude

=
=

0z
|‘|\ |

0o

" \UUJ“ UW'JUU\MUMV A\w«ﬂ\/wxm PN

Original
Recoreded
== Amplitude Diff.

---- Threshold

00 02 04

06 08 10

Frequency (kHz)

Fig. 7: Comparing the amplitude difference in the frequency domain of the recorded versus the expected sound sample.

different programming languages and it is the responsi-
bility of the developers to implement the features needed
for the test specifications. A library of patterns and
examples could be provided by the game client/developer
to provide simple, out-of-the-box specifications to non-
technical people on the project. The implementation uses
the model that defines the interaction with the game, as
described below.

o Framework - Tests Execution. This is the place where
various components manage the set of existing tests and
their execution, result analysis, and the gameplay agent.
Communication with the game side is handled by a
communication stub component, defined below. Briefly,
its subcomponents implement the following things: (a)
Agents - which is an extensible collection of agents that
can play the game, as enumerated in Section[[l] (b) Zests
scheduling / core execution - takes care of scheduling and
concrete execution of tests, as defined in Section [[V-B]
(c) Results Analysis - is where the implementation of the
components described in Section resides. (d) Testing
output support - an extensible collection of tools to
display the results. This can basically consume the output
of the Results Analysis component and display it in visual
tools and web browsers (see the supplementary video
material for examples). Framework clients can extend this
component to their own custom visualization tools. For
the low-level communication aspects, the implementation
can either use technologies such as REST API-enabled
tools such as Flaskﬂ or the simple sockets libraries
available in almost all modern operating systems. For

4Flask project: https:/flask.palletsprojects.com/en/2.0.x/

the game world and performance aspects, choosing a
socket library and building message classes and custom
serialization on top of it is generally the better solution,
in our practical experience.

e Framework - Game Plugin. This component is the middle
layer between communicating with theFramework - Tests
Execution features and the Model exposed by the game
application under test. It also stores persistent data such
as images, sound recordings, or motion data captured
over a series of frames for further analysis by the other
components. A subcomponent that controls the scene or
agents playing the game via the Model is also required
here to perform various tasks. The component itself is
integrated into the game under test using a decoupled
plugin architecture, so that if the game needs to be
deployed to the market either physically or as an online
service, there is no concern that the components on
the test side will be an overhead or another source of
problems or exploits.

VI. EVALUATION

The goal of the evaluation is not to show the result of
code or test coverage, as this is independent of the methods
described in this document. Indeed, the metrics for code or test
coverage can be addressed by the behavior of the Al or scripted
agents playing and testing the game, and by the variety of tests
and actions specified. Instead, our main goal is to evaluate the
quality of visual interpretation, i.e., what happens when human
testers are replaced by our framework in different situations.
As a secondary purpose, we also examined how expensive is
this kind of automatic visual verification of results.

https://flask.palletsprojects.com/en/2.0.x/

-~

Framework - Tests
Specifications

~

Source code for steps
implementations

(different languages can be used such
as Python, Javascript, C#, C++ efc).

F Y

use

Test scenarios
written in
BDD/Gherkin
language

-

Framework - Tests execution

Tests scheduling / | .
core execution

Testing output
support

Rendered Qutput Checking
componts

OpenCV

Metrics |/ State
checking

Tensorflow 2
(reusing finetuned
Efiicienthet. MoveMNet models)

Tesseract, Scipy.
other Python libs

Sound Similarity

Results Analysis

-

Game App

Game components
implementation

moking

{ Framework - Game

plugin

Storage

3

-~

h J

Communication Stub

b

Control / Scene
interaction

o /

— /

. /

Fig. 8: Overview of the architecture of our framework and how its components interact with the game under test. The three
main components (prefixed with Framework) are separate from each other, implement different concerns, and can be developed
and deployed independently. For more details on each component, see Section M

A. Interpretation of visual results evaluation

For the UI text and the detection of simple visual features
recognition, such as the weapon cross tests given in Section
IV-C, we had the automatic test agent run 1000 tests for
weapon changes (between 8 models) at different times in
the game, and the same number of tests with shot triggers
with a number of bullets fired at each event, modeled by a
Gaussian distribution, bullets ~ N(20, 5). The output text
indicating the number of bullets remaining was intentionally
incorrect 50% of the time to mimic failed tests. The same
percentage was used for the weapon cross, i.e., in half of the
cases, the visual output contained an incorrect weapon cross
(e.g., a pistol instead of a shotgun). The accuracy for text
recognition was 95.6%, and for the weapon cross 88.9%. To
achieve these results, we also applied some post-processing
techniques to the rendered images, such as conversion from
RGB to HSV space, computed edge detection, and smoothing,
all using the default features provided by OpenCV. This post-
processing mechanism could be further improved to increase
the accuracy of the results. The errors were mainly observed
when the scene in the tested frame contained too many visual
effects, e.g., when a user was hit or in a certain state that was
displayed with high intensity.

For complex visual recognition with object detection and
deep learning (e.g., for environment identification), we used
the model trained in the C'arCon figurator demo. The same
number of tests, 1000, was used. In half of the cases, the
test agent was intentionally unable to enter the tested vehicles

even if the button was pressed, in the other half we mimicked
a good test result (Fig. f). In the interior, we used different
camera angles and illumination models or intensities to ensure
that the model did not overfit on certain features. In this case,
the accuracy was 100% in both cases. Note that the model has
to detect between three individual classes of vehicle interiors:
a car, a plane, and a bus.

In the accuracy tests for movement control, we used the
Tanks demo to fire projectiles between enemies and then
tested whether the visual representation of the fired projectile
in each test confirmed the internal game state in terms of the
direction of flight or the position of the projectile in the world
during a sequence of N = 180 frames (3 seconds, or less if the
projectile is destroyed beforehand). The evaluation of accuracy
yielded a precision of 89.7% for 1000 projectile tests. The
accuracy threshold angle used, i.e., the maximum allowable
difference between the trajectory in the game state and that
reported by the visual output, was T" = 10deg to address
small numerical precision errors in the reconstruction when
calculating the transformations mentioned in Section[V-C| The
methods could be improved in further work. According to
our observations, the accuracy is mainly affected by occluding
objects and visual artifacts that obscure the projectile in some
frames (e.g., particles triggered by dust, weapons, and other
events). A better evaluation of motion control detection could
also be considered by performing target detection at different
angles and checking whether the visuals detect the correct
angle (binned in some value ranges).

The accuracies obtained prove that an automatic agent

checking the visual results can be used with success to detect
most cases. We also point out that human testers are also prone
to errors due to various physical factors such as composure,
stress, visual obstruction or attention problems, etc. In the
future, more tests could be conducted to do random sampling
and compare the accuracies achieved by human testers and
computerized testers.

B. Evaluating Performance Impact

In the computer game industry, developers are always
concerned with the overhead created by newly added methods.
First of all, it should be clarified that there is no performance
impact when the proposed testing methods are not enabled. In
the development or testing phase, when the test methods are
enabled, there are two main issues related to the performance
topic and our addressed methods: (a) How much additional
memory is required in the game to support the test procedures?
(b) How is the execution speed affected at runtime (affecting
the framerate)?

On the game side, there is no memory overhead because,
as mentioned in Section the computer vision models are
used in the external test process. When the test process is
enabled, the game side is affected in execution time by two
mechanisms: (1) packing a sequence of frames and metadata
and then sending it to the external test process, (2) waiting for
feedback after a particular method has been sent for evaluation.
In (1), packing and sending high-resolution frames was the first
bottleneck encountered. Therefore, we tried switching from
the full HD resolution of 1920x1080 to a lower resolution,
640x480, and re-assessing the accuracy of our methods. The
results were surprisingly good even at the lower resolution,
with the accuracy metrics evaluated in Section degrading
by only 1.2%. Of course, these results may vary depending on
game type, render quality, etc. On a CPU running 8-core AMD
Ryzen 5800x, the average execution time for UI text recogni-
tion was ~ 7.42ms (milliseconds), for Ul feature recognition
using classical OpenCV recognition methods ~ 12.1ms, while
for feature-object recognition using the EfficientNet [4] model
we obtained on average ~ 15.37ms for a single analyzed
image. Obviously, when analyzing a sequence of images
simultaneously, this could become a bottleneck. Therefore,
a pipelined mechanism that performs detection over many
frames is recommended, if feasible on the testing process side,
to avoid peaks in the client game waiting too long for results.

C. Sound testing evaluation

After evaluating the most common defects regarding sounds
playing in computer games, we identified two main sources of
defects on this topic: (a) Sounds that do not play at all due
to incorrect triggers (b) Sounds that are interrupted because
certain events occurred in addition to the previous trigger that
generated the sound. For these two common problems, our
method proved to correctly detect a ~ 93% out of 273 audio
samples tested. The misclassified audio samples are mainly
those that were interrupted a little earlier than they should
have been, and which our thresholding system still considers

to have played correctly. However, when testing voices using
the method in [35]], we found a false positive rate of 33%
out of 27 voices in the Start Wars Rogue Squadron gameﬂ
The low false positive rate is an important factor in trusting
the system, since incorrectly reporting requires human effort.
In order to make the system usable, we are leaving this as
future work. Currently, we consider the idea to fine-tune the
original model to game-specific voices and see if it produces
better text transformation output.

VII. LESSONS LEARNED AND FUTURE WORK

While developing the RiverGame tool, we gather several
insights and new ideas to continue the research and imple-
mentation in the important and relevant field of game testing.
In our previous position paper [9], we thought about improving
the framework using game graphical blueprints [36] combined
with model-based testing, symbolic execution, and fuzzing
[37], but also reinforcement learning and Robotic Process
Automation (RPA) bots [38] as test agents at the UI level
of the game [39]. We provide below other interesting aspects
that we discovered.

The decision to use the BDD methodology and Gherkin to
specify input in a natural language was a well-studied decision
after much trial and error. In game development, multiple
non-technical stakeholders (e.g., artists, producers, quality
assurance, managers) should ideally describe the usability
of the features they want in the game and their correctness
from their perspective. A natural language description of the
specifications, combined with a reusable set of templates
to describe them, facilitates the management and decoupled
development of tests throughout the life of the project. It is
difficult to express the benefits of one method or another in
numbers, but with our proposed method we have found that
more people with different perspectives have been able to
write specifications correctly, whereas previously only people
with programming skills could write correct and valuable
specifications.

While developing the interaction between the BDD and the
game, we found out that by using RestAPI is generally difficult
to maintain states correctly and communicate bidirectionally
between the game side and testing side. This is one of the
reasons why we concluded that we should use websockets
and a collection of persistent logic mechanisms in our imple-
mentation. Separation of concerns in the architecture is also
an important factor that we have noticed during the project
development so far. For example, one of our plans for the
future is to collaborate with the industry to incorporate RPA
[39] into the testing process to possibly replace BDD in some
scenarios.

Prioritizing inputs is also a valuable thing, as developers typ-
ically complain about the time it takes to quickly test between
successive versions of a game. Our visual tool addresses these
concerns in an initial phase, but more work should be done in
this direction. For example, we should have an automatic agent
that detects the areas of the game that are affected by either
the new source code changes or the changed assets and change

the priorities automatically, rather than relying on humans to
change the priorities within the visual tool.

As our tool will mature, we hope that it will be useful to
practitioners from the game industry and at the same time to
provide a playground to academics to experiment and transfer
the latest research ideas to the field of game testing.

ACKNOWLEDGMENTS

This work was supported by a grant of Romanian Ministry
of Research and Innovation UEFISCDI no. 401PED/2020.

REFERENCES

[1] Grand View Research, “Video game market size and forecasts, 2020 -
2027,” Market research report, no. GVR-4-68038-527-4, 2020.

[2] R. E. S. Santos, C. V. C. Magalhdes, L. F. Capretz, J. S. Correia-
Neto, F. Q. B. da Silva, and A. Saher, “Computer games are serious
business and so is their quality: Particularities of software testing in
game development from the perspective of practitioners,” in Proc. of
ESEM’18. ACM, 2018, pp. 1-10.

[3] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. of CVPR’16.
IEEE, 2016, pp. 779-788.

[4] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” in Proc. of ICML’19, ser. Proceedings
of Machine Learning Research, vol. 97. PMLR, 2019, pp. 6105-6114.

[5] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “OpenPose:
Realtime multi-person 2D pose estimation using part affinity fields,”
pp. 172-186, 2021.

[6] R. Votel and N. Li, “Next-generation pose detection
with MoveNet and TensorFlow.js,” May 2021. [Online].
Available: |https://blog.tensorflow.org/2021/05/next- generation- pose-
detection- with-movenet-and-tensorflow;js.html

[71 Epic Games, “Shooter game example.” [Online]. Available: https:
//docs.unrealengine.com/en- US/Resources/SampleGames/ShooterGame

[8] C. Paduraru and M. Paduraru, “Automatic difficulty management and
testing in games using a framework based on behavior trees and genetic
algorithms,” in Proc. of ICECCS’19. 1EEE, 2019, pp. 170-179.

[9]1 C. Paduraru, M. Paduraru, and A. Stefanescu, “Automated game testing
using computer vision methods,” in Proc. of the 1st Int. Workshop on Au-
tomated Software Engineering for Computer Games (ASE4Games’21),
in conjunction with ASE’21. 1EEE, 2021, in press.

[10] N. Tziortziotis, K. Tziortziotis, and K. Blekas, “Play ms. Pac-Man using
an advanced reinforcement learning agent,” in Proc. of SETN’14, ser.
LNCS, vol. 8445. Springer, 2014, pp. 71-83.

[11] F. G. Glavin and M. G. Madden, “Adaptive shooting for bots in
first person shooter games using reinforcement learning,” IEEE Trans.
Comput. Intell. AI Games, vol. 7, no. 2, pp. 180-192, 2015.

[12] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, “Imitating
human playing styles in Super Mario Bros,” Entertain. Comput., vol. 4,
no. 2, pp. 93-104, 2013.

[13] N. Napolitano, “Testing match-3 video games with deep reinforcement
learning,” ArXiv, vol. abs/2007.01137, 2020.

[14] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying MCTS
for human-like general video game playing,” in Proc. of IJCAI'16.
AAAL, 2016, p. 2514-2520.

[15] S. F. Gudmundsson et al., “Human-like playtesting with deep learning,”
in Proc. of CIG’18. 1EEE, 2018, pp. 1-8.

[16] B. Tastan and G. Sukthankar, “Learning policies for first person shooter
games using inverse reinforcement learning,” in Proc. of AIIDE’1].
AAALI, 2011, pp. 85—90.

[17] A. Sosic, E. Rueckert, J. Peters, A. M. Zoubir, and H. Koeppl, “In-
verse reinforcement learning via nonparametric spatio-temporal subgoal
modeling,” J. Mach. Learn. Res., vol. 19, pp. 69:1-69:45, 2018.

(18]

[19]

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

3 https://www.ea.com/games/starwars/squadrons

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

O. Vinyais er ai., “AiphaStar: Mastering the real-time strategy game
StarCraft II” https://deepmind.com/blog/alphastar-mastering-real-time-
strategy- game-starcraft-ii, 2019.

S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing
using synthetic and humanlike agents,” IEEE Transactions on Games,
vol. 13, no. 1, pp. 50-67, 2021.

L. Harries et al., “DRIFT: deep reinforcement learning for functional
software testing,” 2020. [Online]. Available: https://arxiv.org/abs/
2007.08220

J. Pfau, J. D. Smeddinck, and R. Malaka, “Automated game testing with
ICARUS: intelligent completion of adventure riddles via unsupervised
solving,” in Extended Abstracts Publication of CHI PLAY 2017. ACM,
2017, pp. 153-164.

Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in Proc. of ASE’19,
2019, pp. 772-784.

J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in Proc. of
CoG’20. 1EEE, 2020, pp. 600-603.

E. Enoiu and M. Frasheri, “Test agents: The next generation of test
cases,” in Proc. of NEXTA’19 workshop, in conjunction with ICST’19.
IEEE, 2019, pp. 305-308.

I. S. W. B. Prasetya and M. Dastani, “Aplib: An agent programming
library for testing games,” in Proc. of AAMAS’20. ACM, 2020, pp.
1972-1974.

“The OpenCV Library.” [Online]. Available: https://opencv.org

M. Irshad, R. Britto, and K. Petersen, “Adapting behavior driven
development (BDD) for large-scale software systems,” J. Syst. Softw.,
vol. 177, p. 110944, 2021.

T. R. Silva and B. Fitzgerald, “Empirical findings on BDD story parsing
to support consistency assurance between requirements and artifacts,” in
Proc. of EASE’21. ACM, 2021, pp. 266-271.

E. C. dos Santos and P. Vilain, “Automated acceptance tests as software
requirements: An experiment to compare the applicability of fit tables
and gherkin language,” in Proc. of XP’lS8, ser. LNBIP, vol. 314.
Springer, 2018, pp. 104-119.

L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder, “Seamless scene
segmentation,” in Proc. of CVPR’19, 2019, pp. 8277-8286.

D. Bardth and L. Hajder, “Novel ways to estimate homography from
local affine transformations,” in Proc. of VISIGRAPP’16. SciTePress,
2016, pp. 434-445.

B. McFee, C. Raffel, D. Liang, D. Ellis, M. Mcvicar, E. Battenberg, and
O. Nieto, “librosa: Audio and music signal analysis in python,” in Proc.
of SciPy’15, 2015, pp. 18-24.

A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Proc. of NeurIPS’20, 2020.

M. Romero and B. Sewell, Blueprints Visual Scripting for Unreal
Engine: The faster way to build games using UE4 Blueprints, 2nd ed.
Packt Publ., 2019.

C. Paduraru, M. Paduraru, and A. Stefanescu, “RiverFuzzRL - an open-
source tool to experiment with reinforcement learning for fuzzing,” in
Proc. of ICST’21. 1EEE, 2021, pp. 430-435.

W. van der Aalst, M. Bichler, and A. Heinzl, “Robotic process automa-
tion,” Business & Information Syst. Eng., vol. 60, no. 4, pp. 269-272,
2018.

M. Cernat, A.-N. Staicu, and A. Stefanescu, “Improving UI test au-
tomation using robotic process automation,” in Proc. of ICSOFT’20.
SciTePress, 2020, pp. 260-267.

https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ShooterGame
https://docs.unrealengine.com/en-US/Resources/SampleGames/ShooterGame
https://www.ea.com/games/starwars/squadrons
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://arxiv.org/abs/2007.08220
https://arxiv.org/abs/2007.08220
https://opencv.org

	Introduction
	Related work
	Motivation for our work and gaps in the automated game testing field
	Proposed methods
	Tests description methodology
	Tests scheduling and prioritization
	Methods used for computer vision analysis
	Methods for animation testing
	Methods used for sound testing
	Evaluating registered metrics

	Architectural and implementation level
	Evaluation
	Interpretation of visual results evaluation
	Evaluating Performance Impact
	Sound testing evaluation

	Lessons learned and future work
	References

