Math 155 MINITAB Assignment \#2

Due Date: Friday, November 4

Follow all instructions carefully - make sure to print out only what you are specifically told to print out in the instructions. (This will save you a lot of time and effort!) Everything that you'll be asked to turn in will be highlighted in bold, underlined type.

The premise: You are a quality control inspector working for Goodstone Tire and Rubber Company. Your job is to make sure that your company's claims about the life of its tires are statistically sound. To this end, one of your tasks is to select a random sample of newly manufactured Goodstone tires, and have them road tested to measure the lifetime (in miles) of each tire. Then, you determine whether your results seem to support Goodstone's public claim about the distribution of its tires' lifetimes:

> Goodstone's claim:
> Under normal driving conditions and with regular maintenance, the average (mean) lifetime of a Goodstone tire is 50,000 miles, with a standard deviation of 8,500 miles.

Minitab assignment:

1. Use Minitab to simulate a random 100 -tire sample, assuming that the Goodstone claim is true. Proceed as follows:
a) Select [Calc/Random Data/Normal...] from the Minitab menu.
b) Enter 100 for "number of rows of data to generate", and enter the mean and standard deviation as given in "Goodstone's claim." Enter C1 as the column in which to store your data. Click "OK" to generate the sample, and check to make sure your 100 measurements (each of which represents one tire's lifetime, measured in miles) are all there. Select [Stat/Display Descriptive Statistics], enter C1 in the "Variables" box, then click OK to generate the descriptive statistics for this sample.
2. Now that you've got the idea, repeat part 1, but this time enter C1-C25 (instead of just C1) in the "store in column(s)" box. This will simulate 25 random samples of 100 tires each. (Note: do not print out this worksheet!) Then, generate the descriptive statistics for all 25 of these samples, by entering C1-C25 (instead of just C 1) in the "Variables" box.
3. Create a new worksheet. [File/New.../Minitab Worksheet]. In a column of the new worksheet, enter the sample means from your 25 samples you generated in part 2. You'll find these listed together in the session window. (See the attached page for instructions on how to do this quickly, rather than manually typing all 25 numbers into a Minitab column.) Generate the descriptive statistics for this set of sample means. Print out this worksheet, and print out the session window, which should include all of the descriptive statistics you generated in parts 1, 2 and 3. (NOTE: Make sure you're only printing out the worksheet you've created in Part 3 ; it only has 25 rows. Do NOT print out the worksheet with 100 rows that you created for Part 2!)
4. Compare the mean and standard deviation of the collection of sample means from Part 3 to the mean $(50,000)$ and standard deviation $(8,500)$ of the overall distribution of Goodstone tire lifetimes. What do you notice?
Write a few sentences that describe your observations. Write your observations on a separate sheet of paper; do NOT write them on this assignment sheet.

Note: there is a front and a back to these instructions. (You're not finished yet!)

Parts 5-6 below are almost the same as parts 2-3; the difference is that we will increase our sample size from 100 to 10,000 . (Notice that's four zeros, not three!) To be precise: we will now simulate random selections of 10,000 tires, rather than 100 tires as before. You will be asked to observe the effects of this increase in sample size on the mean and the standard deviation of the set of sample means.
5. Create a new worksheet [File/New.../Minitab Worksheet]. Repeat part 2, but this time enter 10000 (instead of 100) for the "number of rows." This will simulate 25 random samples of 10000 tires each. (Please do not print this worksheet! It is huge!) Then, generate the descriptive statistics for all 25 of these samples, as before.
6. Create another new worksheet [File/New.../Minitab Worksheet]. In a column of the new worksheet, enter the sample means from your 25 samples you generated in part 5 . Generate the descriptive statistics for this set of sample means. Print out this worksheet, and print out the session window, which should include all of the descriptive statistics you generated in parts 5 and 6 . (Note: make sure you're only printing the worksheet you created for Part 6; it should only have 25 rows. Do NOT print the giant worksheet you created in Part 5!)
7. Compare the mean of the collection of sample means from Part 6 (sample size $\mathrm{n}=10000$) to the mean of the sample means from Part 4 (sample size $\mathrm{n}=100$). What do you notice? Specifically, how does increasing the sample size tend to affect the mean of the collection of sample means? (In other words: if we were to repeat the above sequence of steps for larger and larger sample sizes -- say, $\mathrm{n}=1$ million, then $\mathrm{n}=1$ billion, etc. - what do you think would happen to the mean of the collection of sample means?) Write your response to this question. Write your response on a separate sheet of paper; do NOT write it on this assignment sheet.
8. Compare the standard deviation of the collection of sample means from Part 6 (sample size $\mathrm{n}=10000$) to the standard deviation of the sample means from Part 4 (sample size $\mathrm{n}=100$). What do you notice? Specifically, how does increasing the sample size tend to affect the standard deviation of the collection of sample means? (In other words: if we were to repeat the above sequence of steps for larger and larger sample sizes -- say, $\mathrm{n}=1$ million, then $n=1$ billion, etc. - what would happen to the standard deviation of the collection of sample means?) Write your response to this question. Write your response on a separate sheet of paper; do NOT write it on this assignment sheet.

Summary: Here is what you will turn in:

- Printouts of the worksheets and session windows from parts 3 and 6 of the assignment. (These are the only printouts you should turn in.)
- Your written (or typed) responses to the questions in parts 4,7 , and 8 .
- Nothing else!

Please put all written (or typed) responses on the same sheet of paper, and clearly indicate which sentence(s) are related to which part of the assignment. (Don't make me guess!) As always, write legibly (or type), and write all responses using complete sentences with proper grammar. Finally, please staple all pages together before turning them in.

Due Date: Friday, November 4

Note: Here's a quick way to copy all 25 sample means into a new worksheet (for parts 3 and 6) without having to manually enter them all into a Minitab column.

Step 1. After generating the descriptive statistics for C1-C25, use your mouse to select (highlight) all 25 columns, plus the column headers, as shown in the screenshot below:

ETHession											
Variable	N	N^{*}	Mean	SE	Hean	StDev	Hinimum	Q1	Median	03)	
C1	10000	0	49894		84.5	8451	14979	44269	49899	55517	
C2	10000	0	49953		85.7	8574	13619	44232	49966	55617	
C3	10000	0	49883		85.2	8522	16393	44268	49747	55547	
C4	10000	0	50005		84.5	8446	13922	44380	50041	55526	
C5	10000	0	50005		84.6	8457	21575	44130	49983	55684	
c6	10000	0	50032		84.2	8421	15686	44324	49975	55712	,
C7	10000	0	50039		84.2	8422	17235	44446	49977	55667	1
C8	10000	0	50051		86.0	8598	14171	44269	49953	55911	,
c9	10000	0	50041		85.2	8519	13353	44379	49875	55839	1
C10	10000	0	50004		84.3	8430	19428	44336	49871	55641	
C11	10000	0	50061		84.9	8494	19472	44364	50071	55836	
C12	10000	0	49994		85.0	8498	18303	44129	50043	55839	Select all of this at once,
C13	10000	0	50013		85.0	8502	16818	44339	49905	55739	then select "copy" from the
C14	10000	0	49818		84.8	8485	16022	44042	49825	55507	"edit" menu.....
C15	10000	0	50015		84.5	8454	17533	44338	49875	55657	
C16	10000	0	50029		84.6	8459	22318	44223	50002	55742	
C17	10000	0	50069		85.0	8499	19462	44372	49962	55786	
C18	10000	0	49945		84.6	8460	15064	44285	49980	55632	
C19	10000	0	50031		83.9	8395	16021	44385	49999	55741	
C20	10000	0	49936		84.3	8435	18724	44213	49933	55705	
C21	10000	0	50052		85.4	8538	21291	44081	50045	55961	
C 22	10000	0	49920		84.1	8405	16886	44214	49926	55476	
C23	10000	0	50035		85.1	8507	15202	44266	50009	55838	
C 24	10000	0	50118		84.1	8413	13969	44465	50139	55766	
C25	10000	0	49921		85.3	8529	12867	43996	49948	55777	
\leqslant			(1])								
14 C11	1	กnกา		ก	Enne		On 0	Аロa	10А7)	AAOEA	

Then, copy the text you just selected [Edit/Copy]. Make sure to include the column headers - "Variable," " N ," etc. - in your selection; these will become the column headers in your new Minitab worksheet (below).

Step 2. Now, open a new worksheet. Select the grey cell (not a white cell) at the top of column C1:

Now, select [Edit/Paste Cells]. A dialog box should appear. Make sure the option "use spaces as delimiters" is selected, and then click "OK." You should now see something like this:

Werksheet 6 ***										
\pm	C1-T	C2	C3	C4	C5	C6	C7	C8	C9	C10
	Variable	N	\mathbf{N}^{*}	Mean	SE	Mean_1	StDev	Minimum	Q1	Median
1	C1	10000	0	49894	84.5	8451	14979	44269	49899	55517
2	C2	10000	0	49953	85.7	8574	13619	44232	49966	55617
3	C3	10000	0	49883	85.2	8522	16393	44268	49747	55547
4	C4	10000	0	50005	84.5	8446	13922	44380	50041	55526
5	C5	10 กñ	\square	50005	845	8457	21575	A4130	A9983	E5ERA

Note that all of the sample means are now in one column (probably C4, as in the above screenshot). This is the column for which you'll want to find the mean and standard deviation for parts 3 and 6 of the assignment.

