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SOFTWARE TESTING 

TECHNIQUES 

13.1 Software Testing Fundamentals 

Testing presents an interesting anomaly for the software engineer. During earlier 

software engineering activities, the engineer attempts to build software from an 

abstract concept to a tangible product. Now comes testing. The engineer creates a 

series of test cases that are intended to "demolish" the software that has been built. In 

fact, testing is the one step in the software process that could be viewed 

(psychologically, at least) as destructive rather than constructive. 

 

13.1.1 Testing Objectives 

Glen Myers states a number of rules that can serve well as testing objectives: 

1. Testing is a process of executing a program with the intent of finding an error. 

2. A good test case is one that has a high probability of finding an as-yet undiscovered 

error. 

3. A successful test is one that uncovers an as-yet-undiscovered error. 

 

Our objective is to design tests that systematically uncover different classes of errors 

and to do so with a minimum amount of time and effort. 

 

13.1.2 Testing Principles 

Before applying methods to design effective test cases, a software engineer must 

understand the basic principles that guide software testing. 

• All tests should be traceable to customer requirements. The objective of 

software testing is to uncover errors. It follows that the most severe defects 

(from the customer’s point of view) are those that cause the program to fail to 

meet its requirements. 

• Tests should be planned long before testing begins. Test planning can begin 

as soon as the requirements model is complete. Detailed definition of test 



cases can begin as soon as the design model has been solidified. Therefore, all 

tests can be planned and designed before any code has been generated. 

• The Pareto principle applies to software testing. Stated simply, the Pareto 

principle implies that 80 percent of all errors uncovered during testing will 

likely be traceable to 20 percent of all program components. The problem, of 

course, is to isolate these suspect components and to thoroughly test them. 

• Testing should begin “in the small” and progress toward testing “in the 

large.” The first tests planned and executed generally focus on individual 

components. As testing progresses, focus shifts in an attempt to find errors in 

integrated clusters of components and ultimately in the entire system. 

• Exhaustive testing is not possible. The number of path permutations for even 

a moderately sized program is exceptionally large. For this reason, it is 

impossible to execute every combination of paths during testing. It is possible, 

however, to adequately cover program logic and to ensure that all conditions 

in the component level design have been exercised. 

• To be most effective, testing should be conducted by an independent third 

party. By most effective, we mean testing that has the highest probability of 

finding errors (the primary objective of testing. The software engineer who 

created the system is not the best person to conduct all tests for the software. 

 

And what about the tests themselves? Kaner, Falk, and Nguyen suggest the following 

attributes of a “good” test: 

1. A good test has a high probability of finding an error. To achieve this goal, the 

tester must understand the software and attempt to develop a mental picture of 

how the software might fail 

2. A good test is not redundant. Testing time and resources are limited. There is 

no point in conducting a test that has the same purpose as another test. Every 

test should have a different purpose (even if it is subtly different).  

3. A good test should be “best of breed” . In a group of tests that have a similar 

intent, time and resource limitations may mitigate toward the execution of 

only a subset of these tests. In such cases, the test that has the highest 

likelihood of uncovering a whole class of errors should be used. 



4. A good test should be neither too simple nor too complex. Although it is 

sometimes possible to combine a series of tests into one test case, the possible 

side effects associated with this approach may mask errors. In general, each 

test should be executed separately. 

 

13.2 Test Case Design 

The design of tests for software and other engineered products can be as challenging 

as the initial design of the product itself. Yet,  software engineers often treat testing as 

an afterthought, developing test cases that may "feel right" but have little assurance of 

being complete. Recalling the objectives of testing, we must design tests that have the 

highest likelihood of finding the most errors with a minimum amount of time and 

effort. 

A rich variety of test case design methods have evolved for software. These methods 

provide the developer with a systematic approach to testing. More important, methods 

provide a mechanism that can help to ensure the completeness of tests and provide the 

highest likelihood for uncovering errors in software. 

Any engineered product (and most other things) can be tested in one of two ways: 

(1) Knowing the specified function that a product has been designed to perform, tests 

can be conducted that demonstrate each function is fully operational while at the same 

time searching for errors in each function; 

 (2) Knowing the internal workings of a product, tests can be conducted to ensure that 

is, internal operations are performed according to specifications and all internal 

components have been adequately exercised.  

The first test approach is called black-box testing and the second, white-box testing. 

When computer software is considered, black-box testing alludes to tests that are 

conducted at the software interface. Although they are designed to uncover errors, 

black-box tests are used to demonstrate that software functions are operational, that 

input is properly accepted and output is correctly produced, and that the integrity of 

external information (e.g., a database) is maintained. A black-box test examines some 

fundamental aspect of a system with little regard for the internal logical structure of 

the software. 

White-box testing of software is predicated on close examination of procedural detail. 

Logical paths through the software are tested by providing test cases that exercise 

specific sets of conditions and/or loops. The "status of the program" may be examined 



at various points to determine if the expected or asserted status corresponds to the 

actual status. 

13.3 White Box Testing 

White-box testing, sometimes called glass-box testing is a test case design method 

that uses the control structure of the procedural design to derive test cases. Using 

white-box testing methods, the software engineer can derive test cases that 

 (1) Guarantee that all independent paths within a module have been exercised at least 

once, 

(2) exercise all logical decisions on their true and false sides,  

(3) Execute all loops at their boundaries and within their operational bounds, and  

(4) Exercise internal data structures to ensure their validity. 

 

13.3.1 BASIS PATH TESTING 

Basis path testing is a white-box testing technique first proposed by Tom McCabe. 

The basis path method enables the test case designer to derive a logical complexity 

measure of a procedural design and use this measure as a guide for defining a basis set 

of execution paths. Test cases derived to exercise the basis set are guaranteed to 

execute every statement in the program at least one time during testing. 

 

Flow Graph Notation 

Before the basis path method can be introduced, a simple notation for the 

representation of control flow, called a flow graph (or program graph) must be 

introduced. The flow graph depicts logical control flow using the notation illustrated 

in Figure 1. Each structured construct (Lecture 11) has a corresponding flow graph 

symbol. 

 
Figure 1: Flow graph notation 



 

To illustrate the use of a flow graph, we consider the procedural design representation 

in Figure 2A.  

 

 



Here, a flowchart is used to depict program control structure. 

Figure 2B maps the flowchart into a corresponding flow graph (assuming that no 

compound conditions are contained in the decision diamonds of the flowchart). 

Referring to Figure 2 B, each circle, called a flow graph node, represents one or more 

procedural statements. A sequence of process boxes and a decision diamond can map 

into a single node. The arrows on the flow graph, called edges or links, represent flow 

of control and are analogous to flowchart arrows. An edge must terminate at a node, 

even if the node does not represent any procedural statements (e.g., see the symbol for 

the if-then-else construct). Areas bounded by edges and nodes are called regions. 

When counting regions, we include the area outside the graph as a region. 

When compound conditions are encountered in a procedural design, the generation of 

a flow graph becomes slightly more complicated. A compound condition occurs when 

one or more Boolean operators (logical OR, AND, NAND, NOR) is present in a 

conditional statement. 

 

Cyclomatic Complexity 

Cyclomatic complexity is a software metric that provides a quantitative measure of the 

logical complexity of a program. When used in the context of the basis path testing 

method, the value computed for cyclomatic complexity defines the number of 

independent paths in the basis set of a program and provides us with an upper bound 

for the number of tests that must be conducted to ensure that all statements have been 

executed at least once. 

An independent path is any path through the program that introduces at least one new 

set of processing statements or a new condition. When stated in terms of a flow graph, 

an independent path must move along at least one edge that has not been traversed 

before the path is defined. For example, a set of independent paths for the flow graph 

illustrated in Figure 2B is 

 

path 1: 1-11 

path 2: 1-2-3-4-5-10-1-11 

path 3: 1-2-3-6-8-9-10-1-11 

path 4: 1-2-3-6-7-9-10-1-11 

 

 



Note that each new path introduces a new edge. The path  

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 

is not considered to be an independent path because it is simply a combination of 

already specified paths and does not traverse any new edges. 

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Figure 2B. That is, if 

tests can be designed to force execution of these paths (a basis set), every statement in 

the program will have been guaranteed to be executed at least one time and every 

condition will have been executed on its true and false sides. It should be noted that 

the basis set is not unique. In fact, a number of different basis sets can be derived for a 

given procedural design. 

How do we know how many paths to look for? The computation of cyclomatic 

complexity provides the answer. 

Cyclomatic complexity has a foundation in graph theory and provides us with an 

extremely useful software metric. Complexity is computed in one of three ways: 

1. The number of regions of the flow graph correspond to the cyclomatic complexity. 

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as 

V(G) = E - N + 2 

where E is the number of flow graph edges, N is the number of flow graph nodes. 

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as 

V(G) = P + 1 

where P is the number of predicate nodes contained in the flow graph G. 

Referring once more to the flow graph in Figure 2B, the cyclomatic complexity can 

be computed using each of the algorithms just noted: 

1. The flow graph has four regions. 

2. V(G) = 11 edges _ 9 nodes + 2 = 4. 

3. V(G) = 3 predicate nodes + 1 = 4. 

Therefore, the cyclomatic complexity of the flow graph in Figure 2B is 4. 

More important, the value for V(G) provides us with an upper bound for the number 

of independent paths that form the basis set and, by implication, an upper bound on 

the number of tests that must be designed and executed to guarantee coverage of all 

program statements. 

 

 

 



Deriving Test Cases 

The basis path testing method can be applied to a procedural design or to source code. 

In this section, we present basis path testing as a series of steps. The procedure 

average, depicted in PDL in Figure 3, will be used as an example to illustrate each 

step in the test case design method.  

 
Figure 3:PDL for test case design with nodes identified 

 

Note that average, although an extremely simple algorithm, contains compound 

conditions and loops. The following steps can be applied to derive the basis set: 

1. Using the design or code as a foundation, draw a corresponding flow 

graph.  

A flow graph is created using the symbols and construction rules presented earlier in 

the lecture . Referring to the PDL for average in Figure 3, a flow graph is created by 

numbering those PDL statements that will be mapped into corresponding flow graph 

nodes. The corresponding flow graph is in Figure 4. 



 
Figure 4: Flow graph for the procedure average 

2. Determine the cyclomatic complexity of the resultant flow graph. The 

cyclomatic complexity, V(G), is determined by applying the algorithms earlier. It 

should be noted that V(G) can be determined without developing a flow graph by 

counting all conditional statements in the PDL (for the procedure average, compound 

conditions count as two) and adding 1. Referring to Figure 4, 

V(G) = 6 regions 

V(G) = 17 edges - 13 nodes + 2 = 6 

V(G) = 5 predicate nodes + 1 = 6 

 

3. Determine a basis set of linearly independent paths. The value of V(G) provides 

the number of linearly independent paths through the program control structure. In the 

case of procedure average, we expect to specify six paths: 

path 1: 1-2-10-11-13 



path 2: 1-2-10-12-13 

path 3: 1-2-3-10-11-13 

path 4: 1-2-3-4-5-8-9-2-. . . 

path 5: 1-2-3-4-5-6-8-9-2-. . . 

path 6: 1-2-3-4-5-6-7-8-9-2-. . . 

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the 

remainder of the control structure is acceptable. It is often worthwhile to identify 

predicate nodes as an aid in the derivation of test cases. In this case, nodes 2, 3, 5, 6, 

and 10 are predicate nodes. 

4-Prepare test cases that will force execution of each path in the basis set. Data 

should be chosen so that conditions at the predicate nodes are appropriately set as 

each path is tested. Each test case is executed and compared to expected results. Once 

all test cases have been completed, the tester can be sure that all statements in the 

program have been executed at least once. 

 

13.3.2 Loop Testing 

Loops are the cornerstone for the vast majority of all algorithms implemented in 

software. And yet, we often pay them little heed while conducting software tests. 

Loop testing is a white-box testing technique that focuses exclusively on the validity 

of loop constructs. Four different classes of loops can be defined: simple loops, 

concatenated loops, nested loops, and unstructured loops (Figure 5). 

 
Figure 5: Classes of loops 



Simple loops. The following set of tests can be applied to simple loops, where n is the 

maximum number of allowable passes through the loop. 

1. Skip the loop entirely. 

2. Only one pass through the loop. 

3. Two passes through the loop. 

4. m passes through the loop where m < n. 

5. n -1, n, n + 1 passes through the loop. 

 

Nested  loops. If we were to extend the test approach for simple loops to nested loops, 

the number of possible tests would grow geometrically as the level of nesting 

increases. This would result in an impractical number of tests. An approach that will 

help to reduce the number of tests: 

1. Start at the innermost loop. Set all other loops to minimum values. 

2. Conduct simple loop tests for the innermost loop while holding the outer loops at 

their minimum iteration parameter (e.g., loop counter) values. Add other tests for out-

of-range or excluded values. 

3. Work outward, conducting tests for the next loop, but keeping all other outer loops 

at minimum values and other nested loops to "typical" values. 

4. Continue until all loops have been tested. 

 

Concatenated  loops. Concatenated loops can be tested using the approach defined 

for simple loops, if each of the loops is independent of the other. However, if two 

loops are concatenated and the loop counter for loop 1 is used as the initial value for 

loop 2, then the loops are not independent. When the loops are not independent, the 

approach applied to nested loops is recommended. 

 

Unstructured loops. Whenever possible, this class of loops should be redesigned to 

reflect the use of the structured programming constructs. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 


