
Undecidability & Rice’s Theorem - Supplement to Section 12.2 

For the following, assume we are using the “Universal” Turing encoding described in Section 12.4 of the text, in which all machines are 

described using 0’s and 1’s. In particular, assume an input alphabet of Σ = {0,1}.  

FUNCTIONAL PROPERTIES 

First, we define the notation 𝑃𝑓: For any function 𝑓, let 𝑃𝑓 denote the set of all Turing machines that compute function 𝑓.  

 

Now suppose 𝐿 is a set of Turing machines such that, for any given function 𝑓, either 𝑃𝑓 is a subset of 𝐿 or 𝑃𝑓 is disjoint from 𝐿. 

(In other words, for any function 𝑓, either every Turing machine that computes 𝑓 is in 𝐿, or no Turing machine that computes 𝑓 is in 𝐿.) 

We also require that 𝐿 be “non-trivial,” which means that 𝐿 and �̅� must both be nonempty (that is, at least one machine must be in 𝐿, but 

also there must be at least one machine not in 𝐿.) In this case, we refer to 𝐿 as a “functional property” of Turing machines.  

 

Note: Another way this  is sometimes expressed is that the condition for membership in 𝐿, rather than 𝐿 itself, is described as being the  

“functional property.”  

For example: If 𝐿 is defined to be the set of all Turing machines that halt on all strings of even length, then 𝐿 is a “functional property” of 

Turing machines. This is because a machine is in 𝐿 if and only if the domain of the function it computes includes all strings of even length. 

(The set of strings on which a machine halts can be thought of as the domain of the function that it computes, since output is generated 

iff the machine halts.) 

We will discuss examples of properties that are functional, and also some examples that are not functional. (To show a property is not 

functional, you just have to find two Turing machines that both have the same property but compute different functions.) 

EXAMPLES 

Here are a few examples of “functional properties.” In each of the following, 𝑓𝑀  is shorthand for “the function computed by 𝑀) 

 

 𝐿1 = {𝑀: 𝑀 eventually halts when given a blank input tape} …or, equivalently: 𝐿1 = {𝑀: 𝜆 ∈ 𝑑𝑜𝑚(𝑓𝑀)} 

 𝐿2 = {𝑀: 𝑀 halts on only a finite number of strings}  …equivalently: 𝐿2 = {𝑀: 𝑑𝑜𝑚(𝑓𝑀) is finite} 

 𝐿3 = {𝑀: 𝑀 outputs a blank tape for all inputs of even length}  

…equivalently: {𝑀: |𝑤| even → 𝑤 ∈ 𝑑𝑜𝑚(𝑓𝑀)  and  𝑓𝑀(𝑤) = 𝜆}  

 𝐿4 = {𝑀: 𝑀 halts on all strings containing at most three 0′𝑠}  

 

 

By contrast, here are a few examples of non-functional properties (also known as “structural” properties): 

 

 𝑁1 = {𝑀: 𝑀 halts in at most three steps when given a blank input tape} 

 𝑁2 = {𝑀: 𝑀 halts after exactly five steps on all strings of length 5 or less} 

 𝑁3 = {𝑀: the transition function for 𝑀 includes the transition 𝛿(11, 111) = (111, 1111, 1)} 

 

For each of these, we could find two Turing machines, both computing the same function, such that one has the stated property but the 

other does not. As a simple example of this, consider 𝑁1 above. Let 𝑀1 and 𝑀2 be as follows: 

 𝑀1: a Turing machine that immediately halts regardless of input 

 𝑀2: A Turing machine that moves to the right five times and then halts, again regardless of input 

 

Both of these machines compute the same language – namely, 𝑓(𝑤) = 𝑤 – since neither makes any changes to the input tape, and both 

halt on all inputs, including a blank input tape. However, 𝑀1 halts in at most three steps, but 𝑀2 requires more than three steps; 

therefore, even though both machines compute the same function, 𝑀1 is in 𝑁1, but 𝑀2 is not in 𝑁1.  Thus, 𝑁1 is not a “functional 

property” of Turing machines. Similarly we can show that 𝑁2 and 𝑁3 are both non-functional (try for yourself).  

 

 

  



Exercises:  (answers are included below; try these before reading the answers!) 

Determine which of the following describe functional properties of Turing machines: 

1. 𝑀 halts on all strings of length at most 10 

2. 𝑀 halts on all strings in at most 10 steps 

3. 𝑀 has at most 10 states and halts on the input 1 

4. 𝑀 halts on all strings that contain a 0 

 

 

 

 

 

 

 

 

Answers to exercises: 

1. Let 𝑀 be any Turing machine, and let 𝑓 be the function that it computes. Then, 𝑀 will have the stated property if, and only if, 𝑑𝑜𝑚(𝑓) 

contains all strings of length 10 or less. Also, it’s clear that this is a nontrivial property – at least one machine has this property, but not all 

of them do. Therefore, this is a functional property of Turing machines.  

 

 

2. This is not a functional property. We can show this by designing two machines that both compute the same language such that one 

has the property and one does not.  

 𝑀1: given any input, immediately halts after 1 step without altering the output. This machine computes 𝑓(𝑤) = 𝑤, and has the 

stated property of halting on all strings in at most 10 steps. 

 𝑀2: given any input, move the read/write head back and forth 20 times, then halt without altering the output. This machine 

also computes 𝑓(𝑤) = 𝑤, but does not have the stated property. (It does halt on all strings, but it violates the “at most 10 

steps” part.) 

 

Since we can exhibit an example of two Turing machines, both computing the same function, such that one has the stated property and 

the other does not, we conclude that this is not a functional property.  

 

 

3. This is not a functional property. This is due to the fact that the property references the number of internal states of the machine, 

which is structural rather than functional. (The “halts on the input 1” part is functional by itself, but as a whole the requirement on states 

makes this a non-functional property.) 

 

We won’t give the full construction here, but it’s not hard to see that we can design two machines, both computing the same language 

(the language 𝑓(𝑤) = 𝑤 would work for this example; as long as it’s a function with 1 in the domain, it works) but such that one machine 

has at most 10 states and the other has more than 10 states.)  

 

For example, 𝑀1 could simply halt immeidately on all inputs; this would only take two states (an initial state and a final state); while 𝑀2 

could be designed to run through, say, twenty different states as it moves to the right twenty times, before halting without modifying the 

input. In this way, we’d describe two machines, both computing 𝑓(𝑤) = 𝑤, such that one has the stated property and one does not.  

 

4. Let 𝑀 be any Turing machine, and let 𝑓 be the function that it computes. Then, 𝑀 will have the stated property if, and only if, the 

domain of 𝑓 includes all strings containing a 0. (Equivalently: 𝑀 does not have the stated property if, and only if, its domain consists 

entirely of strings of the form 1𝑛, 𝑛 ≥ 0.)  Also, it’s clear that this is a nontrivial property. Therefore, this is a functional property. 

 



RICE’S THEOREM: Functional properties of Turing machines are undecidable. 

PROOF: Let 𝐿 be a functional property of Turing machines. Assume (for a contradiction) that 𝐿 is decidable. 

 

Next, we make the following assumption about 𝐿: in order to have the property described by 𝐿, a Turing machine must halt on at least 

one input. In other words, 𝐿 does not include any Turing machine that does not halt on any input. (We will justify this assumption at the 

end of the proof*.)  

 

Now, note that since 𝐿 is a functional property, 𝐿 is nonempty. So, we can select a Turing machine, 𝑅, such that <𝑅> is in 𝐿.  

 

With this setup, we are now going to decide the Halting Set. (Your memory is correct – this is impossible!) That is, we’ll design an 

algorithm which, given an arbitrary Turing machine 𝑀 and input string 𝑤, will decide whether 𝑀 halts on 𝑤. Here’s how to do it: 

 

1. Let a Turing machine, 𝑀, and a string, 𝑤, be given. (Note that these selections have nothing to do with property 𝐿; 𝑀 and 𝑤 are 

completely independent of that.)  

 

2. For this choice of (𝑀, 𝑤), we create the “auxiliary” Turing machine,  𝑇𝑀,𝑤, that behaves as follows: 

 a. Start with an arbitrary input string 𝑥. 

b. Ignore 𝑥 at first; instead, elsewhere on the tape, simulate the computation of 𝑀 on 𝑤. 

c. If 𝑀 halts on 𝑤, erase its output, leaving only 𝑥 on the tape. (Note: If 𝑀 does not halt on 𝑤, then 𝑇𝑀,𝑤 will not halt on any 

input.) 

d. Simulate the computation of 𝑅 on input 𝑥. If 𝑅 halts on 𝑥, the output will be 𝑅(𝑥).  

(Note: If 𝑅 does not halt on 𝑥, then 𝑇𝑀,𝑤 also will not halt on 𝑥.)  

 

Now, consider the function that is actually computed by 𝑇𝑀,𝑤. There are two cases: 

 If 𝑀 does not halt on 𝑤, then 𝑇𝑀,𝑤 will not halt on any input. Recall: we stipulated at the outset that no Turing machine with 

this property can be in 𝐿. Thus, 〈𝑇𝑀,𝑤〉  ∉ 𝐿 in this case. 

 If 𝑀 does halt on 𝑤, then 𝑇𝑀,𝑤 takes string 𝑥 as input and then simulates machine 𝑅. The result is that 𝑇𝑀,𝑤 computes the same 

function as 𝑅. Since 𝐿 is a functional property of Turing machines and 〈𝑅〉 ∈ 𝐿, it follows that 〈𝑇𝑀,𝑤〉 ∈ 𝐿 in this case.** 

 

To summarize: 𝑇𝑀,𝑤 ∈ 𝐿 if and only if 𝑀 halts on input 𝑤. 

 

Now, recall our assumption at the outset of this proof: 𝐿 is decidable. That is, we assumed there exists an algorithm, call it 𝐴, which 

decides 𝐿. So, given any Turing machine 𝑀 and string 𝑤, we can apply algorithm 𝐴 to 𝑇𝑀,𝑤. Then, 𝐴 will output “yes” if and only if 𝑇𝑀,𝑤 is 

in 𝐿… which, as noted above, is true if and only if 𝑀 halts on 𝑤. Thus, 𝐴 decides the Halting Set – but the Halting Set is undecidable, so 

this is impossible!  

  

We have reached a contradiction, which arises due to the assumption that 𝐿 is decidable. Since the above argument holds for all 

functional properties*, we conclude that no functional property is decidable. ∎ 

 

* Justification of the assumption that non-halting machines are not in 𝐿:  

First, note that a set is decidable if and only if its complement is decidable. For, if a Turing machine outputs “yes” if 𝑤 ∈ 𝐿 and “no” if 

𝑤 ∉ 𝐿, simply reversing these two outputs will give us a deciding algorithm for �̅�. So, rather than writing two separate proofs, simply 

note that if 𝐿 does include the set of Turing machines that never halt on any input, then the complement, �̅� does not include these 

Turing machines. In that case, the above proof can simply be applied to �̅� rather than to 𝐿. This would show that �̅� is undecidable, 

which would imply that 𝐿 is undecidable. 

 

** Note: if 𝐿 were not functional, then the proof would break down here. Our construction assumes that, for whatever machine 𝑅 we 

selected, any other machine that computes the same function as 𝑅 must also be in 𝐿. Without this assumption, the result that 𝑅 and 𝑇𝑀,𝑤 

compute the same function wouldn’t necessarily imply that 𝑇𝑀,𝑤 is in 𝐿, and so there would be no contradiction. 

 

 



Example: Consider the set of all Turing machines that output 001 on the input 111 and do not halt on the input 000. Show that this is a 

functional property of Turing machines, and therefore undecidable.  

Proof: Let 𝐿 denote the set of all Turing machines that perform as described. If 𝑀 ∈ 𝐿, then 𝑀𝑓 (the function computed by 𝑀) is a 

function such that 𝑓(111) = 001 and 000 ∉ 𝑑𝑜𝑚(𝑀𝑓). Any given function, 𝑓, either satisfies both of these properties (in which case 

𝑃𝑓 ⊂ 𝐿) or it violates one or both properties (in which case 𝑃𝑓 ∩ 𝐿 = ∅). Therefore, this is a functional property, and therefore it is 

undecidable due to Rice’s theorem.  

Example: Consider the set of all Turing machines that output 001 on the input 111 in at most five steps, and that run for at least ten steps 

on the input 000. Show that this is not a  functional property of Turing machines. Also, describe an algorithm for deciding this property. 

Answer: The fact that this property references how the machine operates, rather than just what its inputs and outputs are eventually, 

implies that this is not a functional property.  To show this conclusively, we just need to design two Turing machines, say 𝑀1 and 𝑀2, 

that compute the same function, 𝑓,  such that 𝑀1 satisfies the stated property but 𝑀2does not. One such solution is described below. 

(Note that this is far from the only solution – try to think of another way to do it!) 

First, we show a block diagram for 𝑀1 (see the diagram to the right). 

Keep in mind that in a block diagram, the lack of an available transition means that the 

machine halts, rather than “getting stuck.”  

So, this machine operates as follows: 

 Immediately halts on empty input 

 On an input starting with a 0, moves 11 steps to the right, then halts (note that no changes are made to the tape) 

Note that this makes 𝑀1  “run for at least 10 steps on input 000,” as required 

 On an input starting with two 1’s, replaces both of these 1’s with 0’s, then halts 

Note that 𝑀2 thus halts on 001 when given input 111, and this takes only two steps; thus 𝑀1 “output[s] 001 on the input 111 in at 

most five steps,” as required  

 On an input starting with 10 (or just the input string 1), the machine will overwrite the initial 1 with a 0, then halt. 

 

We have to take care to make 𝑀1 and 𝑀2 (below) compute the same function, so let’s state this function explicitly: 

For 𝑤 ∈ {0,1}∗: 

𝑓(𝑤) = 𝑤  if 𝑤 does not start with a 1

𝑓(1) = 0

𝑓(11𝑤′) = 00𝑤′ if 𝑤 = 11𝑤′ for some 𝑤′ ∈ {0,1}∗

𝑓(10𝑤′) = 00𝑤′ if 𝑤 = 10𝑤′ for some 𝑤′ ∈ {0,1}∗

 

 

Now, it remains to design a machine, 𝑀2, that also computes the same function 𝑓, but which does not have the stated property.  

There are many ways to accomplish this. One very simple solution is shown in the diagram to 

the right.  

The only difference between 𝑀2 and 𝑀1 is that 𝑀2 immediately halts on any string not 

starting with a 1, while 𝑀1 would first move the r/w head 11 moves to the right before 

halting. In each case, the input is unchanged if it does not start with a 1. For inputs that do start with a 1, the operation of 𝑀2 is exactly 

the same as that of 𝑀1. Thus, the two machines will always give the same outputs for identical inputs; that is, they compute the same 

function. On the other hand, 𝑀2 violates the “at least ten steps on the input 000” rule, since it would immediately on that input.  

Thus, there exist two machines that compute the same function such that one has the stated property but the other does not. Since 

such an example exists, it follows that this is not a functional property of functions.   

  



Example: Describe an algorithm for deciding the non-functional property considered in the preceding example.  

A decision algorithm for this property would be to simply run a given machine on the inputs 111 and 000, and observe the results. We 

can easily verify whether it halts in at most five steps on 111 and runs for at least ten steps on 000.  

 

CAUTION: The fact that a property is non-functional does not automatically imply that it is decidable; in other words, the converse of 

Rice’s Theorem is not true. All we can say with certainty, in all cases, is the following: 

IF a property is functional, THEN it is undecidable. 

…or, equivalently, the contrapositive… 

IF a property is decidable, THEN it must be non-functional.. 

 

So, we can use Rice’s theorem to show that a property is undecidable, or (with its contrapositive) to show that a property is non-

functional. In retrospect,  then, we could have shown the property from the previous example was non-functional simply by describing 

the decision algorithm for it, thus saving a lot of time and effort. …but, that wouldn’t have been nearly as much fun! 

 

 

Practice Exercises: 

Determine whether each of the following properties are decidable. If it is decidable, describe an algorithm for deciding it.  

 

1. The set of all Turing machines that halt on all input strings of odd length, but do not halt on any string of even length 

 

2. The set of machines that never halt when given a blank input tape (i.e., input string 𝜆). 

 

3. The set of machines that halt immediately when given a blank input tape. 

 

4. The set of machines which, when in state 𝑞1 and reading a 0, go to a final state. 

 

5. The set of all machines that halt on a finite number of strings. 

 

[Solutions on the next page] 

 

 

  



Solutions: 

1. This is a functional property, so Rice’s theorem tells us it is undecidable. Let 𝑀 be any Turing machine, and let 𝑓 be the function it 

computes. Then, 𝑓 has the stated property if, and only if, 𝑑𝑜𝑚(𝑓) includes all strings of odd length and no strings of even length. Since 

this determination depends entirely on the function computed by 𝑀, this is a functional property. 

 

2. This is a functional property, so it is undecidable. A Turing machine has this property  if and only if 𝜆 is not in the domain of the 

function that it computes.  

 

3. This is decidable: the deciding algorithm is to simply run a given machine on a blank input tape, and see if it immediately halts. (Note: 

“immediately” here means that no moves are made before halting, so this determination could be made right away.) 

 

Note: It’s tempting, after reading #2, to also declare #3 to be a functional property – at first glance, we might conclude that a machine 

has this property if and only if 𝜆 IS in the domain of the computed function. And this would be correct, if not for the “immediately” part 

of the stated property. “Immediately” gets to how the machine computes, rather than what it computes – that is, it is structural rather 

than functional. If #3 had read “the set of machines that halt on a blank input tape,” without the word “immediately,” then it would also 

be an example of a functional property, and it would be undecidable.  

 

4. This is decidable. Given a machine M, the algorithm would be to scan the (finite) code for M, to determine whether any of its 

transitions are of the form 𝛿(𝑞1, 0) = (𝑞𝐹 ,∗,∗) where 𝑞𝐹  is a final state. A machine has the stated property if and only if it has a transition 

rule of this form.  

 

5. This is a functional property, so it is undecidable. A Turing machine has this property if and only if the domain of the function it 

computes is finite.   

 


