
Teach Yourself Limits in 8 Hours: Part 3

In last two posts we have developed basic concepts and rules of limits. Continuing our journey

further we now introduce certain powerful tools which help us in evaluation of limits of

complicated expressions. We start with the simplest technique first.

Limits using Logarithms

In case we need to evaluate the limit of an expression of type  then we can take

logarithm and then the evaluation of limits becomes simpler. We will first illustrate the

technique through an example and then provide the justification.

Let us suppose we wish to evaluate the limit

Let us write

and then we have

We will first calculate the limit of  as .

Then we have . The justification of this last

step is provided by the rule of substitution (provided in last post) of limits namely:

If  and  and further  in a deleted neighborhood of

, then .

{f(x)}g(x)

lim
x→0+

(2 − )earcsin2 x√
3/x

f(x) = (2 − )earcsin2 x√
3/x

log f(x) = log(2 − )3

x
earcsin2 x√

log f(x) x → 0+

log f(x)lim
x→0

= log(2 − )lim
x→0+

3

x
earcsin2 x√

= 3 ⋅lim
x→0+

log(1 + 1 − )earcsin2 x√

1 − earcsin2 x√

1 − earcsin2 x√

x

= 3 1 ⋅lim
x→0+

1 − earcsin2 x√

x

= −3 lim
x→0+

− 1earcsin2 x√

x

= −3 ⋅lim
x→0+

− 1earcsin2 x√

arcsin2 x√

arcsin2 x√

x

= −3 1 ⋅lim
x→0+

( )arcsin x√

x√

2

= −3  (putting y = arcsin )lim
y→0+

( )y

sin y

2

x√

= −3 ⋅ = −312

f(x) = exp( log f(x)) =limx→0+ limx→0+ e−3

g(x) = blimx→a f(x) = Llimx→b g(x) ≠ b

a f{g(x)} = Llimx→a
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Replacing  by  and setting  in the above rule we see that

 and  and then  or

The example limit problem is taken from MSE.

To summarize, in order to evaluate limit of an expression of type  we take

logarithm of this expression and evaluate the limit of resulting expression. If the limit of this

resulting expression is  then the limit of original expression is .

Next we study the most overused and highly powerful technique which involves concept of

differentiation.

L'Hôpital's Rule

This rule is also written with simplified spelling as L'Hospital's Rule and we state its exact

statement below:

Version 1: If  are functions differentiable in a certain neighborhood of  (except

possibly at ) and  and  then we have

.

Version 2: If  are functions differentiable in a certain neighborhood of  (except

possibly at ) and  as  and  then we have .

For both the versions of the rule it is also true that if  tends to  (or to ) as

 then so does . From the statement of the rule above we can see that this rule

is applicable to specially troublesome cases when substitution leads to zero numerators and

zero denominators (or when the denominator tends to ). In the informal / crude language

we say that rule can be applied in case of indeterminate forms  and . I

have mentioned the word "indeterminate forms" because this is prevalent in most calculus texts

although I find this term very confusing and a source of many troubles for the beginners. I

prefer to state that one should try to apply L'Hospital's rule if one is supposed to evaluate the

limit of an expression of type  where both numerator and denominator tend to  or

the denominator tends to  in absolute value as . Moreover the rule will work only

when  exists (or is ).

The rule is not fool-proof because under the same conditions it may happen that

 exists but  does not exist. For example the rule fails

when we try to use it to evaluate the limit

g(x) log g(x) f(x) = ex

log g(x) = blimx→a =limx→b ex eb =limx→a elog g(x) eb

g(x) = exp( log g(x))lim
x→a

lim
x→a

{f(x)}g(x)

L eL

f(x), g(x) a

a f(x) = g(x) = 0limx→a limx→a = Llim
x→a

(x)f ′

(x)g′

= Llim
x→a

f(x)

g(x)

f(x), g(x) a

a |g(x)| → ∞ x → a = Llim
x→a

(x)f ′

(x)g′
= Llim

x→a

f(x)

g(x)

(x)/ (x)f ′ g′ ∞ −∞

x → a f(x)/g(x)

±∞

0/0 (anything)/(±∞)

f(x)/g(x) 0

∞ x → a

(x)/ (x)limx→a f ′ g′ ±∞

f(x)/g(x)limx→a (x)/ (x)limx→a f ′ g′

lim
x→0

sin(1/x)x2

x
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This is the case when both numerator and denominator tend to . And if we apply L'Hospital

Rule we get the ratio

which does not tend to a limit as . On the other hand the original function gets

simplified to  and this tends to  as . Another example of the failure of the

rule is

Here both numerator and denominator tend to  and the limit is easily seen to be . But if

we apply L'Hospital's Rule we get the ratio

and this does not tend to a limit as  simply because of the fact that denominator

vanishes for infinitely many large values of . The proofs of both versions of the rule will be

provided in the next post.

This technique, although powerful, has some shortcomings. Sometimes differentiation can

generate complicated expression and depending upon the problem multiple applications of this

rule may be needed which may lead to very complicated expressions as a result of multiple

differentiation. Another problem might be that differentiation itself can lead to an expression

where the evaluation of limit does not seem possible. In my opinion the rule should be used

only when other techniques described so far have failed. Jumping to L'Hospital's Rule for any

and every limit problem is not a good idea.

I will start with the classic example where other methods don't seem to work namely

Clearly if we use L'Hospital's rule we get

Another example of the application of L'Hospital's rule is presented in an earlier post. Next

example is from MSE:

Clearly we have

0

2x sin(1/x) − cos(1/x)

1

x → 0

x sin(1/x) 0 x → 0

lim
x→∞

x

x + sin x

∞ 1

1

1 + cos x

x → ∞

x

lim
x→0

sin x − x

x3

= = − = − ⋅ = −lim
x→0

sin x − x

x3
lim
x→0

cos x − 1

3x2

1

3
lim
x→0

1 − cos x

x2

1

3

1

2

1

6

−lim
x→1

x

x − 1

1

log x
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In the last step we have used .

Next example is of a rather different kind. Suppose that  exists. We will show that in this

case

Note that the limit on LHS may exist even though  may not exist hence this should not

be taken as a definition of . To establish this result we first note that existence of 

implies the existence of  in a neighbourhood of  and we can see that in this limit both

numerator and denominator tend to zero as . Hence we can apply L'Hospital's rule to

get

Note that we can't apply L'Hospital Rule once more as we don't know whether  exists in

a neighbourhood of  or not. We only have the existence of . The way to proceed now is

that we have to use the definition of :

so that

where  tends to zero with . Similarly

where  as . Thus we have

Letting  we get

−lim
x→1

x

x − 1

1

log x
= lim

x→1

x log x − x + 1

(x − 1) log x

= lim
x→1

log x

log x +
x − 1

x

= lim
x→1

1

1 + ⋅
1

x

x − 1

log x

= =
1

1 + ⋅ 1
1

1

1

2

(x − 1)/ log x = h/ log(1 + h) = 1limx→1 limh→0

(a)f ′′

= (a)lim
h→0

f(a + h) − 2f(a) + f(a − h)

h2
f ′′

(a)f ′′

(a)f ′′ (a)f ′′

(x)f ′ a

h → 0

=lim
h→0

f(a + h) − 2f(a) + f(a − h)

h2
lim
h→0

(a + h) − (a − h)f ′ f ′

2h

(x)f ′′

a (a)f ′′

(a)f ′′

(a) =f ′′ lim
h→0

(a + h) − (a)f ′ f ′

h

(a + h) = (a) + h{ (a) + ρ}f ′ f ′ f ′′

ρ h

(a − h) = (a) − h{ (a) + }f ′ f ′ f ′′ ρ′

→ 0ρ′ h → 0

(a + h) − (a − h)f ′ f ′

⇒
(a + h) − (a − h)f ′ f ′

2h

= 2h (a) + h(ρ − )f ′′ ρ′

= (a) +f ′′ ρ − ρ′

2

h → 0

= (a)lim
h→0

(a + h) − (a − h)f ′ f ′

2h
f ′′
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A related problem is available at MSE.

Series Expansions

We finally describe the technique of using series expansions. This technique is most easily

applied for problems where the limit variable tends to zero. The case  can be replaced

by  by putting  so effectively the technique applies to this scenario also. The

technique is based on the following result (which is more popularly known as Taylor's

Theorem):

If  exists then

where  is an expression in  which tends to  with .

If we put  and replace  by  we see that if  exists then

Using this formula (which can and will be proved using L'Hospital's rule in next post) we have

the following series expansions:

In all these expressions  as . For any other specific function one may have to

derive its series expansion by calculating successive derivatives. Depending upon a specific

problem we decide how many terms of the expansion are needed.

Let us apply this technique to evaluate the following limit

We first need to get the expansion of . After some labor we can see that all the even

derivatives of  at  are  and calculation of first few odd derivatives at  we get

and we already have

x → a

h → 0 x = a + h

(a)f (n)

f(a + h) = f(a) + h (a) + (a) + ⋯ + (a) + { (a) + ρ}f ′ h2

2!
f ′′ hn−1

(n − 1)!
f (n−1) hn

n!
f (n)

ρ a, h 0 h

a = 0 h x (0)f (n)

f(x) = f(0) + x (0) + (0) + ⋯ + (0) + { (0) + ρ}f ′ x2

2!
f ′′ xn−1

(n − 1)!
f (n−1) xn

n!
f (n)

ex

sin x

cos x

log(1 + x)

(x)tan−1

= 1 + x + + + ⋯ + {1 + ρ}
x2

2!

x3

3!

xn

n!

= x − − + ⋯ + (−1 {1 + ρ}
x3

3!

x5

5!
)n x2n+1

(2n + 1)!

= 1 − − + ⋯ + (−1 {1 + ρ}
x2

2!

x4

4!
)n x2n

(2n)!

= x − + − + ⋯ + (−1 {1 + ρ}
x2

2

x3

3

x4

4
)n−1 xn

n

= x − + − + ⋯ + (−1 {1 + ρ}
x3

3

x5

5

x7

7
)n x2n+1

2n + 1

ρ → 0 x → 0

lim
x→0

tan x x −tan−1 x2

x6

tan x

tan x x = 0 0 x = 0

tan x = x + + + ρ
x3

3

2

15
x5 x6
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so that

It now follows that

and therefore we can see that

In practice we don't write the terms containing  and manipulate the power series using

various algebraical rules of addition, multiplication and division and assume that there will be

terms containing expressions composed of  and higher powers of  at the end. I have shown

that taking limits via the series expansion is justified because in reality the number of terms in

series in finite and last term contains higher power of  and also contains expressions like 

which tend to  with .

Most calculus texts try to treat this technique in a very non-rigorous way and prefer to use

infinite series and their manipulations which needs some justification using high level concepts

(like uniform convergence) whereas in the above I have described a finite series expansion

based on a version of Taylor's Theorem.

This technique of power series expansions should be used only when all the other techniques

(rules of limits, L'Hospital's Rule) fail.

 

x = x − + +tan−1 x3

3

x5

5
ρ′x6

tan x x = + ( + − ) +  terms with higher powers of x with ρ,tan−1 x2 2

15

1

5

1

9
x6 ρ′

tan x x − = +  terms with higher powers of x with ρ,tan−1 x2 2

9
x6 ρ′

=lim
x→0

tan x x −tan−1 x2

x6

2

9

ρ

ρ x

x ρ

0 x
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